[FONT="]So basically I have this math problem that tells me to use the identity, [/FONT]
[FONT="]A^3 + B^3 = (A + B)*(A^2 - AB + B^2) [/FONT]
[FONT="]to prove the following, [/FONT]
[FONT="]1-((sin^2(x)*tan(x))/(tan(x) + 1)) - ((cos^2(x))/(tan(x)+1)) = sin(x)*cos(x) [/FONT]
[FONT="]*Note: I just used 'x' instead of the theta symbol [/FONT]
[FONT="]I kinda get how to prove the given identity, but I have no idea how I am supposed to use the given identity to prove the other one. Any advice or help would be greatly appreciated.[/FONT]
[FONT="]A^3 + B^3 = (A + B)*(A^2 - AB + B^2) [/FONT]
[FONT="]to prove the following, [/FONT]
[FONT="]1-((sin^2(x)*tan(x))/(tan(x) + 1)) - ((cos^2(x))/(tan(x)+1)) = sin(x)*cos(x) [/FONT]
[FONT="]*Note: I just used 'x' instead of the theta symbol [/FONT]
[FONT="]I kinda get how to prove the given identity, but I have no idea how I am supposed to use the given identity to prove the other one. Any advice or help would be greatly appreciated.[/FONT]