"If the sum of the digits of a number is divisible by 3, then the number itself is divisible by 3."
Here we go with the proof that was provided, that didn't help me:
"Let the number N be represented as: a(subscript n)a(sub n-2)...a(sub 3)a(sub 2)a(sub 1), where the a(sub i) represents the actual digits of N,
N --- a[sub:3p9eykam]n[/sub:3p9eykam]a[sub:3p9eykam]n-1[/sub:3p9eykam]a[sub:3p9eykam]n-2[/sub:3p9eykam]...a[sub:3p9eykam]3[/sub:3p9eykam]a[sub:3p9eykam]n[/sub:3p9eykam]2[sub:3p9eykam]1[/sub:3p9eykam]
so that a(sub n)a(sub n-2)...a(sub 3)a(sub 2)a(sub 1) is actually a string of digits constituting N, like N=7497.
Then the value of N=10(superscript n-1)a(subscript n) + 10(superscript n-2)a(subscript n-1)...just as 7497=7x1000 + 4x100 + 9x10 +7 (1)<<< for 7497 we have n = 4
and
7497 = 10[sup:3p9eykam]4-1[/sup:3p9eykam] * 7 + 10[sup:3p9eykam]3-1[/sup:3p9eykam] * 4 + 10[sup:3p9eykam]2-1[/sup:3p9eykam] * 9 + 10[sup:3p9eykam]1-1[/sup:3p9eykam] * 7
and
a[sub:3p9eykam]4[/sub:3p9eykam] = 7
a[sub:3p9eykam]3[/sub:3p9eykam] = 4
a[sub:3p9eykam]2[/sub:3p9eykam] = 9
a[sub:3p9eykam]1[/sub:3p9eykam] = 7
Since the sum of the digits of N: a(sub n) + a(sub n-2)...a(sub 3) + a(sub 2) + a(sub 1), is divisible by 3, that makes the sum a multiple of 3. That is,
a(sub n) + a(sub n-2)...a(sub 3) + a(sub 2) + a(sub 1)= 3K,
where K is an arbitrary number. (2)<<<< in this case 7+4+9+7 = 27 >>> so K = 9
N = 10[sup:3p9eykam]n-1[/sup:3p9eykam] * a[sub:3p9eykam]n[/sub:3p9eykam] + 10[sup:3p9eykam]n-2[/sup:3p9eykam] * a[sub:3p9eykam]n-1[/sub:3p9eykam] +......+ 10[sup:3p9eykam]1[/sup:3p9eykam] * a[sub:3p9eykam]2[/sub:3p9eykam] + 10[sup:3p9eykam]0[/sup:3p9eykam] * a[sub:3p9eykam]1[/sub:3p9eykam]
N - (a[sub:3p9eykam]n[/sub:3p9eykam] + a[sub:3p9eykam]n-1[/sub:3p9eykam]... + a[sub:3p9eykam]2[/sub:3p9eykam] + a[sub:3p9eykam]2[/sub:3p9eykam]) = 10[sup:3p9eykam]n-1[/sup:3p9eykam] * a[sub:3p9eykam]n[/sub:3p9eykam] + 10[sup:3p9eykam]n-2[/sup:3p9eykam] * a[sub:3p9eykam]n-1[/sub:3p9eykam] +......+ 10[sup:3p9eykam]1[/sup:3p9eykam] * a[sub:3p9eykam]2[/sub:3p9eykam] + 10[sup:3p9eykam]0[/sup:3p9eykam] * a[sub:3p9eykam]1[/sub:3p9eykam] - (a[sub:3p9eykam]n[/sub:3p9eykam] + a[sub:3p9eykam]n-1[/sub:3p9eykam]... + a[sub:3p9eykam]2[/sub:3p9eykam] + a[sub:3p9eykam]1[/sub:3p9eykam])
N - 3K = (10[sup:3p9eykam]n-1[/sup:3p9eykam]-1) * a[sub:3p9eykam]n[/sub:3p9eykam] + (10[sup:3p9eykam]n-2[/sup:3p9eykam] -1)* a[sub:3p9eykam]n-1[/sub:3p9eykam] +......+ (10[sup:3p9eykam]1[/sup:3p9eykam] -1)* a[sub:3p9eykam]2[/sub:3p9eykam] + (10[sup:3p9eykam]0[/sup:3p9eykam] -1)* a[sub:3p9eykam]1[/sub:3p9eykam]
N - 3K = (10[sup:3p9eykam]n-1[/sup:3p9eykam]-1) * a[sub:3p9eykam]n[/sub:3p9eykam] + (10[sup:3p9eykam]n-2[/sup:3p9eykam] -1)* a[sub:3p9eykam]n-1[/sub:3p9eykam] +......+ (9)* a[sub:3p9eykam]2[/sub:3p9eykam] + (0)* a[sub:3p9eykam]1[/sub:3p9eykam]
Every term on the RHS is divisible by 3 (actually by 9) - let us write RHS = 3M
Then
N - 3K = 3M
N = 3(K+M)
Q.E.D
If you don't understand the logic above - tell me exactly where I loose you first....
a(subscript 1) = 3K - a(sub n) - a(sub n-2)...a(sub 3) - a(sub 2) - a(sub 1) (3)
substituting 3 into 2 and simplifying:
N=(10(superscript n-1)-1)a(subscript n) + (10(superscript n-2)-1)a(subscript n-1)...99a(subscript 3) + 9a(subscript 2) (4)
Now, 10(superscript n-1) - 1 has (n-1)9s, 10(superscript n-2) -1 has (n-2)9s, and so on, so that each term in (4) is divisible by 3.
Therefore, N itself is divisible by 3."
'Bout the only thing that I understand in this whole proof is the example of 7498, i.e., we weight each digit in a number according to its place value. The rest is over my head. And I apologize for not reproducing many specialized keyboard symbols that appeared in the original. I hope my text substitutions were clear.