Roger.Robert
New member
- Joined
- Jan 27, 2018
- Messages
- 30
If \(\displaystyle \displaystyle a,\, b\, c\, \in\, (0,\, +\infty)\) and a*b*c=1, prove that:
\(\displaystyle \displaystyle \frac{a}{2\,+\,b*c}\,+\,\frac{b}{2\,+\,a*c}\,+\, \frac{c}{2\,+\,a*b} \,\ge\, 1\)
so
\(\displaystyle \displaystyle \frac{a^{2}}{2*a\,+\,1}\,+\,\frac{b^{2}}{2*b\,+\,1}\,+\,\frac{c^{2}}{2*c\,+\,1}\,\geq\, 1\)
I don't know what to do from here..
\(\displaystyle \displaystyle \frac{a}{2\,+\,b*c}\,+\,\frac{b}{2\,+\,a*c}\,+\, \frac{c}{2\,+\,a*b} \,\ge\, 1\)
so
\(\displaystyle \displaystyle \frac{a^{2}}{2*a\,+\,1}\,+\,\frac{b^{2}}{2*b\,+\,1}\,+\,\frac{c^{2}}{2*c\,+\,1}\,\geq\, 1\)
I don't know what to do from here..
Last edited by a moderator: