Question: By identifying each of the following limits as a derivative, find the value of the limit.
\(\displaystyle \L\\{\lim }\limits_{h \to 0} \frac{{\sqrt[3]{{27 + h}} - 3}}{h}\)
\(\displaystyle \L\\{\lim }\limits_{x \to 2} \frac{{x^5 - 32}}{{x - 2}}\)
My problem is I do not really know what is being asked of me, the following is how I think I solve the problem...
\(\displaystyle \L\\\begin{array}{l}
{\lim }\limits_{h \to 0} \frac{{\sqrt[3]{{27 + h}} - 3}}{h} \\
f(h) = \sqrt[3]{{27 + h}} - 3 \\
f(h) = \left( {27 + h} \right)^{1/3} - 3 \\
f'(h) = \frac{1}{3}\left( {27 + h} \right)^{ - 2/3} \\
f'(0) = \frac{1}{3}\left( {27} \right)^{ - 2/3} \\
f'(0) = \frac{1}{{27}} \\
{\lim }\limits_{h \to 0} \frac{{\sqrt[3]{{27 + h}} - 3}}{h} ={\lim }\limits_{h \to 0} \frac{{f(x)}}{x} = {\lim }\limits_{h \to 0} \frac{{f(x) - f(0)}}{{x - 0}} = f'(0) = \frac{1}{{27}} \\
\end{array}\)
\(\displaystyle \L\\\begin{array}{l}
{\lim }\limits_{x \to 2} \frac{{x^5 - 32}}{{x - 2}} \\
f(x) = x^5 - 32 \\
f'(x) = 5x^4 \\
f'(2) = 5(2)^4 \\
f'(2) = 80 \\
{\lim }\limits_{x \to 2} \frac{{x^5 - 32}}{{x - 2}} ={\lim }\limits_{x \to 2} \frac{{f(x)}}{{x - 2}} ={\lim }\limits_{x \to 2} \frac{{f(x) - f(2)}}{{x - 2}} = f'(2) = 80 \\
\end{array}\)
Thanks Sophie
\(\displaystyle \L\\{\lim }\limits_{h \to 0} \frac{{\sqrt[3]{{27 + h}} - 3}}{h}\)
\(\displaystyle \L\\{\lim }\limits_{x \to 2} \frac{{x^5 - 32}}{{x - 2}}\)
My problem is I do not really know what is being asked of me, the following is how I think I solve the problem...
\(\displaystyle \L\\\begin{array}{l}
{\lim }\limits_{h \to 0} \frac{{\sqrt[3]{{27 + h}} - 3}}{h} \\
f(h) = \sqrt[3]{{27 + h}} - 3 \\
f(h) = \left( {27 + h} \right)^{1/3} - 3 \\
f'(h) = \frac{1}{3}\left( {27 + h} \right)^{ - 2/3} \\
f'(0) = \frac{1}{3}\left( {27} \right)^{ - 2/3} \\
f'(0) = \frac{1}{{27}} \\
{\lim }\limits_{h \to 0} \frac{{\sqrt[3]{{27 + h}} - 3}}{h} ={\lim }\limits_{h \to 0} \frac{{f(x)}}{x} = {\lim }\limits_{h \to 0} \frac{{f(x) - f(0)}}{{x - 0}} = f'(0) = \frac{1}{{27}} \\
\end{array}\)
\(\displaystyle \L\\\begin{array}{l}
{\lim }\limits_{x \to 2} \frac{{x^5 - 32}}{{x - 2}} \\
f(x) = x^5 - 32 \\
f'(x) = 5x^4 \\
f'(2) = 5(2)^4 \\
f'(2) = 80 \\
{\lim }\limits_{x \to 2} \frac{{x^5 - 32}}{{x - 2}} ={\lim }\limits_{x \to 2} \frac{{f(x)}}{{x - 2}} ={\lim }\limits_{x \to 2} \frac{{f(x) - f(2)}}{{x - 2}} = f'(2) = 80 \\
\end{array}\)
Thanks Sophie