\(\displaystyle \sin\theta \cos^3\!\theta - \cos\theta\sin^3\!\theta \:=\: \tfrac{1}{4}\sin4\theta\)
. . . . . . . . . . . ↑
Hello, Valentas!
There must be a typo.
\(\displaystyle \sin\theta\cos^3\!\theta - \cos\theta\sin^3\!\theta \;=\;\sin\theta\cos\theta(\cos^2\!\theta - \sin^2\!\theta)\)
. . . . . . . .. . . . . . . . . . . . . . \(\displaystyle =\;\left(\tfrac{1}{2}\sin2\theta\right)\left(\cos2\theta) \)
. . . . . . . . . . . . . . . . . . . . . .\(\displaystyle =\;\tfrac{1}{2}\left(\tfrac{1}{2}\sin4\theta\right)\)
. . . . . . . . . . . . . . . . . . . . . .\(\displaystyle =\;\tfrac{1}{4}\sin4\theta\)
totally forgot about sin(2a)