The left side is: .\(\displaystyle \L\frac{\frac{1}{\cos\theta}\,-\,\frac{1}{\sin\theta}}{\frac{1}{\cos\theta}\,+\,\frac{1}{\sin\theta}}\)\(\displaystyle \frac{\sec\theta\,-\,\csc\theta}{\sec\theta\,+\,\csc\theta}\:=\:\frac{\tan\theta\,-\,1}{\tan\theta\,+\,1}\)
soroban said:Hello, yasaminG!
The left side is: .\(\displaystyle \L\frac{\frac{1}{\cos\theta}\,-\,\frac{1}{\sin\theta}}{\frac{1}{\cos\theta}\,+\,\frac{1}{\sin\theta}}\)\(\displaystyle \frac{\sec\theta\,-\,\csc\theta}{\sec\theta\,+\,\csc\theta}\:=\:\frac{\tan\theta\,-\,1}{\tan\theta\,+\,1}\)
Multiply top and bottom by \(\displaystyle \sin\theta:\;\;\L\frac{\frac{\sin\theta}{\cos\theta}\,-\,1}{\frac{\sin\theta}{\cos\theta}\,+\,1}\;=\;\frac{\tan\theta\,-\,1}{\tan\theta\,+\,1}\)