Solve [ (2x^2) / (x^2 - 9) ] - [ x / (3 - x) ] = -5 / (x + 3)
This is what I've tried:
NPV= +/- 3
[ (2x^2) / (x + 3)(x - 3) ] - [x / (3 - x) ] = -5 / (x + 3)
I multiplied this by it's LCF to get:
2x^2(3 - x) - x(x + 3)(x - 3) = -5(x - 3)(3 - x)
(6x^2 - 2x^3) - (x^2 + 3x)(x-3) = (-5x + 15)(3 - x)
(6x^2 - 2x^3) - (x^3 - 3x^2 + 3x^2 - 9x) = -15x + 5x^2 + 45 - 15x
(6x^2 - 2x^3) - (x^3 - 9x) = 5x^2 - 30x + 45
6x^2 - 2x^3 - x^3 + 9x = 5x^2 - 30x + 45
-3x^3 + 6x^2 + 9x - 5x^2 + 30x - 45 = 0
-3x^3 + x^2 + 39x - 45 = 0
P(3) = -3(3)^3 + (3)^2 + 39(3) - 45
P(3) = 0
3 | -3 1 39 -45
| 9 -24 45
-3 -8 15 0
This is what I've tried:
NPV= +/- 3
[ (2x^2) / (x + 3)(x - 3) ] - [x / (3 - x) ] = -5 / (x + 3)
I multiplied this by it's LCF to get:
2x^2(3 - x) - x(x + 3)(x - 3) = -5(x - 3)(3 - x)
(6x^2 - 2x^3) - (x^2 + 3x)(x-3) = (-5x + 15)(3 - x)
(6x^2 - 2x^3) - (x^3 - 3x^2 + 3x^2 - 9x) = -15x + 5x^2 + 45 - 15x
(6x^2 - 2x^3) - (x^3 - 9x) = 5x^2 - 30x + 45
6x^2 - 2x^3 - x^3 + 9x = 5x^2 - 30x + 45
-3x^3 + 6x^2 + 9x - 5x^2 + 30x - 45 = 0
-3x^3 + x^2 + 39x - 45 = 0
P(3) = -3(3)^3 + (3)^2 + 39(3) - 45
P(3) = 0
3 | -3 1 39 -45
| 9 -24 45
-3 -8 15 0