Hyperbolic functions

\(\displaystyle f(x) \ = \ xcosh^{-1}\bigg(\frac{x}{4}\bigg) \ -\sqrt(x^{2}-16)\)

\(\displaystyle f \ ' \ (x) \ = \ (1)cosh^{-1}\bigg(\frac{x}{4}\bigg)+x \frac{1/4}{\sqrt((x^{2}/16)-1)} -\frac{1}{2}(x^{2}-16)^{-1/2}(2x)\)

\(\displaystyle = \ cosh^-1}\bigg(\frac{x}{4}\bigg)+\frac{x}{\sqrt(x^{2}-16)}-\frac{x}{\sqrt(x^{2}-16)}\)

\(\displaystyle = \ cosh^{-1}\bigg(\frac{x}{4}\bigg)\)

\(\displaystyle Hence \ f \ ' \ (6) \ = \ cosh^{-1}\bigg(\frac{3}{2}\bigg) \ = \ ln\bigg(\frac{3+\sqrt 5}{2}\bigg). \ QED\)
 
Top