Hyperbolic Function in Exponent

logarithmic differentiation, that's how.

\(\displaystyle \L\\y=x^{cosh(x)}\)

log of both sides:

\(\displaystyle \L\\ln(y)=ln(x^{cosh(x)})\)

Property of logs:

\(\displaystyle \L\\ln(y)=cosh(x)ln(x)\)

Differentiate(product rule) both sides:

\(\displaystyle \L\\\frac{y'}{y}=sinh(x)ln(x)+\frac{cosh(x)}{x}\)

Since \(\displaystyle \L\\cosh(x)=\frac{e^{x}+e^{-x}}{2}\)

\(\displaystyle \L\\y'=(sinh(x)ln(x)+\frac{cosh(x)}{x})x^{\frac{e^{x}+e^{-x}}{2}\)
 
Top