Hydrostatic Pressure Sluice Gate

JimCrown

New member
Joined
Oct 5, 2016
Messages
42
Hello guys,

Please can you help with a question I am struggling with. I have done as much working out as I could until I was completely stumped:

Calculate the concrete volume that is required to keep the sluice gate AB closed, assuming that the only resisting force is the friction between the concrete block and soil. The sluice door is square (900 x 900 mm) and hinged at point A (refer to Figure 1).

Use a factor of safety of 1.5.

Take density of water 1000 kg/m3 and concrete 2500 kg/m3. Assume the friction between the concrete block and soil is 0.55 x concrete mass

Height/H = 5.4m

Degree = 140
s.JPG


My working out is:

Sine 140 = AC/0.9 AC = 0.9*sin40 = 0.579m

y = 5.4 + (0.579/2) = 5.6895

A = 0.9*0.9 = 0.81m^2

R = pgyA = 1000*9.81*0.81*5.6895 = 45209.336 kN

D/Magnitude = sin^2 (IGG + A (y/sin)^2 / A *y)

sin140^2 = 0.413

IGG = bd^3 / 12 = 0.9*0.9^3 / 12 = 0.0547m^4

D/Magnitude = 0.413 (0.0547 + 0.081(5.6895/0.643)^2 / 0.81*5.6895) = 5.688m


I am now perplexed an confused on how to find the volume of concrete to keep the gate shut.

Would it be:

R*(FE + EA) = W*0.55

sin140 = D - y / EF EF = D - y / sin140 = 5.688 - 5.1105 / sin140 = 0.5775m

Then add R (45209.336) to the concrete weight (after converting it into KN) and multiplying the answer by (0.5775). Then dividing by 0.55 to get the W figure?
 
I have tried again and got this

My working out is:

Sine 140 = AC/0.9 AC = 0.9*sin40 = 0.579m

y = 5.4 + (0.579/2) = 5.6895

A = 0.9*0.9 = 0.81m^2

R = pgyA = 1000*9.81*0.81*5.6895 = 45.2093 kN

D/Magnitude = sin^2 (IGG + A (y/sin)^2 / A *y)

sin140^2 = 0.413

IGG = bd^3 / 12 = 0.9*0.9^3 / 12 = 0.0547m^4

D/Magnitude = 0.413 (0.0547 + 0.081(5.6895/0.643)^2 / 0.81*5.6895) = 5.688m


I am now perplexed an confused on how to find the volume of concrete to keep the gate shut.

Would it be:

R*(FE + EA) = W*0.55

sin140 = D - y / EF EF = D - y / sin140 = 5.688 - 5.1105 / sin140 = 0.5775m

EA (Middle of gate) = 0.9/2 = 0.45

45.2093*(0.5775 + 0.45) = W*0.55

W = 84.459 x (1000/9.81) = 8609.5 kg

I do not know how to get the concrete volume and how will I use the factor of safety
 
I have tried again. The only error I found was the D-y value from a previous attempt I forgot to replace the old y value with the new y value. How is this?


Sine 140 = AC/0.9 AC = 0.9*sin140 = 0.579m

y = 5.4 + (0.579/2) = 5.6895

A = 0.9*0.9 = 0.81m^2

R = pgyA = 1000*9.81*0.81*5.6895 = 45.2093 kN

D/Magnitude = sin^2 (IGG + A (y/sin)^2 / A *y)

sin140^2 = 0.413

IGG = bd^3 / 12 = 0.9*0.9^3 / 12 = 0.0547m^4

D/Magnitude = 0.413 (0.0547 + 0.081(5.6895/0.643)^2 / 0.81*5.6895) = 5.688m



Would it be:

R*(FE + EA) = W*0.55

sin140 = D - y / EF EF = D - y / sin140 = 5.688 - 5.6895/ sin140 = -0.00233358574m

EA (Middle of gate) = 0.9/2 = 0.45

45.2093*(-0.00233358574 + 0.45) = W*0.55

W = 36.798 KN * (1000/9.81) = 3751.07 kg

Convert weight into mass

Mass = 3751.07* 9.81 = 36798

Volume of Concrete = Mass/Density = 36798/2500 = 14.72
 
Top