Hello, bowman1!
I'll take a guess . . .
Could it be . . . \(\displaystyle \L\frac{1}{16^{x+2}} \:= \:32^{x-1}\)
We have: \(\displaystyle \L\,\frac{1}{(2^4)^{x+2}}\;=\;(2^5)^{x-1}\)
Then: \(\displaystyle \L\,\frac{1}{2^{4x+8}}\;=\;2^{5x-5}\;\;\Rightarrow\;\;2^{-4x-8}\;=\;2^{5x-5}\)
Equate exponents: \(\displaystyle \L\,-4x\,-\,8\:=\:5x\,-\,5\;\;\Rightarrow\;\;9x\,=\,-3\;\;\Rightarrow\;\;x\,=\,-\frac{1}{3}\)