I guess GCF is 5^4 and 3^2 ? Remaining terms 1 and 3.
Yes:
. . . . .\(\displaystyle \dfrac{3^3\, \cdot\, 5^4\, +\, 3^2\, \cdot\, 5^4}{3\, \cdot\, 5^4}\, =\, \dfrac{(3^2\, \cdot\, 5^4)\, \cdot (3^1)\, +\, (3^2\, \cdot\, 5^4)\, \cdot\, (1)}{3\, \cdot\, 5^4}\, =\, \dfrac{(3^2\, \cdot\, 5^4)\, \cdot\, (3\, +\, 1)}{3\, \cdot\, 5^4}\)
Just for a plain example I tried to do : 6 * 2 + 3 * 4. GCF is 2 and 3, and what remains is 2 and 2 ?
Bad example, as 6*2 = 3*4 = 12. But, to be complete:
. . . . .\(\displaystyle 6\, \cdot\, 2\, +\, 3\, \cdot\, 4\, =\, 2\, \cdot\, 3\, \cdot\, 2\, +\, 3\, \cdot\, 2\, \cdot\, 2\, =\, 2^2\, \cdot\, 3\, +\, 3\, \cdot\, 2^2\)
The GCF is 3 * 2
2 = 12, with the remaining terms being 1 and 1, for two copies of 12 (which makes sense).
![Wink ;) ;)]()