Given that [MATH]\text{f(}x\text{)}={{x}^{\frac{1}{3}}}[/MATH]. Find the value(s) of x when [MATH]\text{f '(}x\text{)}=0[/MATH] and state the interval(s) for which [MATH]\text{f '(}x\text{)}>0[/MATH] and [MATH]\text{f '(}x\text{)}<0[/MATH].
This is my calculation,
[MATH] \begin{align} \text{f (}x\text{)}&={{x}^{\frac{1}{3}}} \\ \text{f '(}x\text{)}&=\frac{1}{3{{x}^{\frac{2}{3}}}} \\ \text{when f '(}x\text{)}&=0 \\ \frac{1}{3{{x}^{\frac{2}{3}}}}&=0 \\ 1&=0 \end{align} [/MATH]Been stuck on this part, can anyone guide me? Thanks.
This is my calculation,
[MATH] \begin{align} \text{f (}x\text{)}&={{x}^{\frac{1}{3}}} \\ \text{f '(}x\text{)}&=\frac{1}{3{{x}^{\frac{2}{3}}}} \\ \text{when f '(}x\text{)}&=0 \\ \frac{1}{3{{x}^{\frac{2}{3}}}}&=0 \\ 1&=0 \end{align} [/MATH]Been stuck on this part, can anyone guide me? Thanks.