How to solve this limit

Without using l'hopital.

View attachment 35188
First, let [imath]u = x - \dfrac{\pi}{6} \implies \cos(x) = \cos\left(\dfrac{\pi}{6}+u\right) [/imath]
Use the identities below to turn all trig function into half angles i.e. [imath]\dfrac{u}{2}[/imath]

Trig Identities:
[imath] (1): \sin(2\theta) = 2\sin(\theta)\cos(\theta)\\ (2): \cos(A+B) =\cos(A)\cos(B)+\sin(A)\sin(B)\\ (3): 1-\cos(2\theta) = 2\sin^2(\theta) [/imath]
 
Last edited:
First, let [imath]u = x - \dfrac{\pi}{6} \implies \cos(x) = \cos\left(\dfrac{\pi}{6}+u\right) [/imath]
Use the identities below to turn all trig function into half angles i.e. [imath]\dfrac{u}{2}[/imath]

Trig Identities:
[imath] (1): \sin(2\theta) = 2\sin(\theta)\cos(\theta)\\ (2): \cos(A+B) =\cos(A)\cos(B)+\sin(A)\sin(B)\\ (3): 1-\cos(2\theta) = 2\sin^2(\theta) [/imath]
Thank you, could you expand please?
 
Let [imath]u = x - \pi/6[/imath]

[math]\lim_{u \to 0} ~ \dfrac{\sin(u)}{ \dfrac{\sqrt{3}}{2}-\cos\left(\dfrac{\pi}{6}+u\right)}[/math]
Numerator:
[math]\sin(u) = 2\sin\left(\dfrac{u}{2}\right)\cos\left(\dfrac{u}{2}\right) \quad \because (1)[/math]
Denominator:
[math] \dfrac{\sqrt{3}}{2}-\cos\left(\dfrac{\pi}{6}+u\right) = \dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3}}{2}\cos(u)+ \dfrac{1}{2}\sin(u)\quad \because (2) [/math]
Can you turn all trig functions in the denominator into half angles using the provided identities? Things will simplify and eventually you can just do the direct substitution. Post back your work if you need more help.
 
Ohh ofc, I forgot about sin cos of 30° is √3/2 and 1/2. Thank you, you life saver.
 
Top