Start by putting them over a common denominator: [imath]\displaystyle\frac{3}{1-x^{1/2}}-\frac{2}{1-x^{1/3}}=\frac{3\left(1-x^{1/3}\right)-2\left(1-x^{1/2}\right)}{\left(1-x^{1/2}\right)\left(1-x^{1/3}\right)}[/imath]
Then let [imath]\displaystyle x=\lim_{h\to0}\left(1+h\right)[/imath], and substitute in:
[imath]\displaystyle\frac{3\left(1-\left(1+h\right)^{1/3}\right)-2\left(1-\left(1+h\right)^{1/2}\right)}{\left(1-\left(1+h\right)^{1/2}\right)\left(1-\left(1+h\right)^{1/3}\right)}[/imath]
Express the square root and the cube root as their binomial expansions:
[imath]\displaystyle1-\left(1+h\right)^{1/2}=1-\left(1+\frac{h}{2}-\frac{h^2}{8}\right)=-\frac{h}{2}+\frac{h^2}{8}[/imath]
[imath]\displaystyle1-\left(1+h\right)^{1/3}=1-\left(1+\frac{h}{3}-\frac{h^2}{9}\right)=-\frac{h}{3}+\frac{h^2}{9}[/imath]
Plug these expansions into the above.
After you do the algebra, you'll have [imath]h^2[/imath] as the dominant terms in both numerator and denominator. Cancel all the [imath]h^2[/imath] and then the answer is [imath]\displaystyle\frac{1}{2}[/imath]