Hello. I'm trying to solve the following equation for x :
\(\displaystyle 1-\left(1-\dfrac{x}{y}\right)^x = \dfrac{1}{2}\)
I put all unknown at the left side :
\(\displaystyle \left(1-\dfrac{x}{y}\right)^x = 1-\dfrac{1}{2}\)
\(\displaystyle \left(1-\dfrac{x}{y}\right)^x = \dfrac{1}{2}\)
Then I use the following property :
\(\displaystyle a ^ x = b \Leftrightarrow x =\dfrac{ ln\left(b\right) }{ln\left(a\right)} \)
\(\displaystyle x = \dfrac{ ln\left(\dfrac{1}{2}\right) }{ ln\left(1-\dfrac{x}{y}\right) } \)
I got this but then i'm stuck :
\(\displaystyle x \cdot ln\left(1-\dfrac{x}{y}\right) = ln\left(\dfrac{1}{2}\right) \)
I have tried is to go further but i'm not sure this is the right way :
\(\displaystyle x \cdot ln\left(\dfrac{y}{y}-\dfrac{x}{y}\right) = ln\left(\dfrac{1}{2}\right) \)
\(\displaystyle x \cdot ln\left(\dfrac{y-x}{y}\right) = ln\left(\dfrac{1}{2}\right) \)
\(\displaystyle x \cdot \left(ln\left(y-x\right) - ln\left(y\right)\right) = ln\left(\dfrac{1}{2}\right) \)
\(\displaystyle x \cdot ln\left(y-x\right) - x \cdot ln\left(y\right) = ln\left(\dfrac{1}{2}\right) \)
\(\displaystyle 1-\left(1-\dfrac{x}{y}\right)^x = \dfrac{1}{2}\)
I put all unknown at the left side :
\(\displaystyle \left(1-\dfrac{x}{y}\right)^x = 1-\dfrac{1}{2}\)
\(\displaystyle \left(1-\dfrac{x}{y}\right)^x = \dfrac{1}{2}\)
Then I use the following property :
\(\displaystyle a ^ x = b \Leftrightarrow x =\dfrac{ ln\left(b\right) }{ln\left(a\right)} \)
\(\displaystyle x = \dfrac{ ln\left(\dfrac{1}{2}\right) }{ ln\left(1-\dfrac{x}{y}\right) } \)
I got this but then i'm stuck :
\(\displaystyle x \cdot ln\left(1-\dfrac{x}{y}\right) = ln\left(\dfrac{1}{2}\right) \)
I have tried is to go further but i'm not sure this is the right way :
\(\displaystyle x \cdot ln\left(\dfrac{y}{y}-\dfrac{x}{y}\right) = ln\left(\dfrac{1}{2}\right) \)
\(\displaystyle x \cdot ln\left(\dfrac{y-x}{y}\right) = ln\left(\dfrac{1}{2}\right) \)
\(\displaystyle x \cdot \left(ln\left(y-x\right) - ln\left(y\right)\right) = ln\left(\dfrac{1}{2}\right) \)
\(\displaystyle x \cdot ln\left(y-x\right) - x \cdot ln\left(y\right) = ln\left(\dfrac{1}{2}\right) \)
Last edited: