Can you solve for 'n' when:[MATH]6561=(-3)^{(n-1)} [/MATH]I try to convert to log form, but the base is negative, and calculator give me math error.
Please teach me how to solve this question, thanks.
Can you solve for 'n' when:
6561 = 3^(n-1)
Correct, well done.[MATH] \displaystyle 6561 = (-3)^{(n-1)} \\= (-1 \times 3)^{(n-1)} \\= (-1)^{(n-1)} \times3^{(n-1)} \\6561 >0 \\ 3^{(n-1)}>0 \\(-1)^{(n-1)}>0 \\so\quad(-1)^{(n-1)}=1 \quad and\quad\:n-1 \: is\: even\: integer \\6561 = (3)^{(n-1)} \\ \log _{3} 6561=n-1 \\8=n-1 \\n=9 [/MATH]
please check my calculation, is it correct? Thanks.
I too am impressed with your work! As far as us checking your work you can do that yourself. Just verify if 3^8 = 6561 or even better, check if (-3)^8 =6561[MATH] \displaystyle 6561 = (-3)^{(n-1)} \\= (-1 \times 3)^{(n-1)} \\= (-1)^{(n-1)} \times3^{(n-1)} \\6561 >0 \\ 3^{(n-1)}>0 \\(-1)^{(n-1)}>0 \\so\quad(-1)^{(n-1)}=1 \quad and\quad\:n-1 \: is\: even\: integer \\6561 = (3)^{(n-1)} \\ \log _{3} 6561=n-1 \\8=n-1 \\n=9 [/MATH]
please check my calculation, is it correct? Thanks.