Nevermind, i figured it out, dont know hoe to delete this thread though :s
K kasiviv002 New member Joined May 24, 2011 Messages 8 Nov 15, 2011 #1 Nevermind, i figured it out, dont know hoe to delete this thread though :s Last edited: Nov 15, 2011
D Deleted member 4993 Guest Nov 15, 2011 #2 kasiviv002 said: (1-tan2x)/(1+tan2x) = Cos2x - sin2x i'm not sure how to begin :s Click to expand... convert: \(\displaystyle tan(x) = \dfrac{sin(x)}{cos(x)}\)
kasiviv002 said: (1-tan2x)/(1+tan2x) = Cos2x - sin2x i'm not sure how to begin :s Click to expand... convert: \(\displaystyle tan(x) = \dfrac{sin(x)}{cos(x)}\)
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Nov 16, 2011 #3 Hello, kasiviv002! \(\displaystyle \text{Prove that: }\:\dfrac{1-\tan^2\!x}{1+\tan^2\!x} \:=\:\cos^2\!x - \sin^2\!x\) Click to expand... \(\displaystyle \dfrac{1-\tan^2\!x}{1+\tan^2\!x} \;=\;\dfrac{1-\tan^2\!x}{\sec^2\!x} \;=\;\cos^2\!x(1-\tan^2\!x)\) . . . . . . . . .\(\displaystyle =\;\cos^2\!x\left(1 - \frac{\sin^2\!x}{\cos^2\!x}\right) \;=\;\cos^2\!x - \sin^2\!x\)
Hello, kasiviv002! \(\displaystyle \text{Prove that: }\:\dfrac{1-\tan^2\!x}{1+\tan^2\!x} \:=\:\cos^2\!x - \sin^2\!x\) Click to expand... \(\displaystyle \dfrac{1-\tan^2\!x}{1+\tan^2\!x} \;=\;\dfrac{1-\tan^2\!x}{\sec^2\!x} \;=\;\cos^2\!x(1-\tan^2\!x)\) . . . . . . . . .\(\displaystyle =\;\cos^2\!x\left(1 - \frac{\sin^2\!x}{\cos^2\!x}\right) \;=\;\cos^2\!x - \sin^2\!x\)