Let's follow up here:
Let:
[MATH]I=\int \cos^4(x)\sin^6(x)\,dx[/MATH]
Consider the following two identities:
[MATH]\sin^2(x)=\frac{1-\cos(2x)}{2}[/MATH]
[MATH]\cos^2(x)=\frac{1+\cos(2x)}{2}[/MATH]
These identities allow us to write the integrand as:
[MATH]\frac{1}{32}(1-\cos(2x))^3(1+\cos(2x))^2=\frac{1}{32}(1-\cos(2x))(1-\cos^2(2x))^2=\frac{1}{32}(1-\cos(2x))\sin^4(2x)[/MATH]
Applying the first of the two identities, we obtain:
[MATH]\frac{1}{128}(1-\cos(2x))(1-\cos(4x))^2=\frac{1}{128}(1-\cos(2x))(1-2\cos(4x)+\cos^2(4x))[/MATH]
Applying the second of the identities above, we get:
[MATH]\frac{1}{256}(1-\cos(2x))(3-4\cos(4x)+\cos(8x))[/MATH]
Expanding, we obtain:
[MATH]\frac{1}{256}(3-4\cos(4x)+\cos(8x)-3\cos(2x)+4\cos(2x)\cos(4x)-\cos(2x)\cos(8x))[/MATH]
Next, consider the following product-to-sum identity:
[MATH]2\cos(\alpha)\cos(\beta)=\cos(\alpha-\beta)+\cos(\alpha+\beta)[/MATH]
Applying this, our integrand becomes:
[MATH]\frac{1}{512}(6-2\cos(2x)-8\cos(4x)+3\cos(6x)+2\cos(8x)-\cos(10x))[/MATH]
Now, we have an integrand that can be directly integrated:
[MATH]I=\frac{1}{512}\left(6x-\sin(2x)-2\sin(4x)+\frac{1}{2}\sin(6x)+\frac{1}{4}\sin(8x)-\frac{1}{10}\sin(10x)\right)+C[/MATH]
And finally:
[MATH]I=\frac{1}{10240}\left(120x-20\sin(2x)-40\sin(4x)+10\sin(6x)+5\sin(8x)-2\sin(10x)\right)+C[/MATH]