We are told that: \(\displaystyle \L\:\lim_{z\to\infty}\left(1\,+\,\frac{1}{z}\right)^z\;=\;e\)
Now we hammer the given problem into that form . . .
We have: \(\displaystyle \L\:\left(1\,+\,\frac{1}{\left(\frac{n}{7}\right)}\right)^n \;=\;\left[\left(1\,+\,\frac{1}{\left(\frac{n}{7}\right)}\right)^n\right]^{\frac{7}{7}} \;=\;\left[\left(1\,+\,\frac{1}{\left(\frac{n}{7}\right)}\right)^{\frac{n}{7}}\right]^7\)
Note that if \(\displaystyle n\to\infty\), then \(\displaystyle \frac{n}{7} \to\infty\)
Take the limit: \(\displaystyle \L\:\lim_{n\to\infty}\left[\left(1\,+\,\frac{1}{\left(\frac{n}{7}\right)}\right)^{\frac{n}{7}}\right]^7 \;=\;\underbrace{\left[\lim_{\frac{n}{7}\to\infty}\left(1\,+\,\frac{1}{\left(\frac{n}{7}\right)}\right)^{\frac{n}{7}}\right]}_{\text{This is e}} ^7\)
This site uses cookies to help personalise content, tailor your experience and to keep you logged in if you register.
By continuing to use this site, you are consenting to our use of cookies.