How to get started on limit [n => infty] (1 + 7/n)^n

cheffy

Junior Member
Joined
Jan 10, 2007
Messages
73
\(\displaystyle \lim_{n \to \infty}
\left( {1 + \frac{7}{n}} \right)^n
\\)

How do I start this? Please help.

Thanks.
 
Here's a hint:

\(\displaystyle \L\\\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n}=e\)
 
Hello, cheffy!

Galactus tossed you a BIG hint.
But if you don't know how to apply it, it's wasted, of course.


\(\displaystyle \L\lim_{n \to \infty} \left(1\,+\,\frac{7}{n}\right)^n\)

We are told that: \(\displaystyle \L\:\lim_{z\to\infty}\left(1\,+\,\frac{1}{z}\right)^z\;=\;e\)

Now we hammer the given problem into that form . . .


We have: \(\displaystyle \L\:\left(1\,+\,\frac{1}{\left(\frac{n}{7}\right)}\right)^n \;=\;\left[\left(1\,+\,\frac{1}{\left(\frac{n}{7}\right)}\right)^n\right]^{\frac{7}{7}} \;=\;\left[\left(1\,+\,\frac{1}{\left(\frac{n}{7}\right)}\right)^{\frac{n}{7}}\right]^7\)

Note that if \(\displaystyle n\to\infty\), then \(\displaystyle \frac{n}{7} \to\infty\)


Take the limit: \(\displaystyle \L\:\lim_{n\to\infty}\left[\left(1\,+\,\frac{1}{\left(\frac{n}{7}\right)}\right)^{\frac{n}{7}}\right]^7 \;=\;\underbrace{\left[\lim_{\frac{n}{7}\to\infty}\left(1\,+\,\frac{1}{\left(\frac{n}{7}\right)}\right)^{\frac{n}{7}}\right]}_{\text{This is e}} ^7\)

Therefore: \(\displaystyle \L\:\lim_{n\to\infty}\left(1\,+\,\frac{7}{n}\right)^n\;=\;e^7\)


~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

In general: \(\displaystyle \L\:\lim_{n\to\infty}\left(1\,+\,\frac{k}{n}\right)^n \;=\;e^k\)

 
Top