How to find all points on the curve xy-y^2=1 where the slope of the tangent line is -1/2
P pierre New member Joined Aug 1, 2010 Messages 1 Aug 1, 2010 #1 How to find all points on the curve xy-y^2=1 where the slope of the tangent line is -1/2
mmm4444bot Super Moderator Joined Oct 6, 2005 Messages 10,962 Aug 2, 2010 #2 Use the Quadratic Formula to solve the given equation for y. You'll get two expressions in x. Set the derivative of each equal to -1/2, and solve for x.
Use the Quadratic Formula to solve the given equation for y. You'll get two expressions in x. Set the derivative of each equal to -1/2, and solve for x.
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Aug 2, 2010 #3 Hello, pierre! Find all points on the curve xy−y2 = 1 [1]\displaystyle \text{Find all points on the curve }\:xy-y^2\:=\:1\;\;[1]Find all points on the curve xy−y2=1[1] . . where the slope of the tangent line is -12\displaystyle \text{where the slope of the tangent line is }\,\text{-}\tfrac{1}{2}where the slope of the tangent line is -21 Click to expand... Differentiate implicitly:\displaystyle \text{Differentiate implicitly:}Differentiate implicitly: . . xdydx+y−2ydydx = 0⇒2ydydx−xdydx = y⇒(2y−x)dydx = y\displaystyle x\tfrac{dy}{dx} + y - 2y\tfrac{dy}{dx} \:=\:0 \quad\Rightarrow\quad 2y\tfrac{dy}{dx} - x\tfrac{dy}{dx} \:=\:y \quad\Rightarrow\quad (2y-x)\tfrac{dy}{dx} \:=\:yxdxdy+y−2ydxdy=0⇒2ydxdy−xdxdy=y⇒(2y−x)dxdy=y . . Hence: dydx = y2y−x\displaystyle \text{Hence: }\;\frac{dy}{dx} \;=\;\frac{y}{2y-x}Hence: dxdy=2y−xy Then: y2y−x = −12\displaystyle \text{Then: }\;\frac{y}{2y-x} \;=\;-\frac{1}{2}Then: 2y−xy=−21 . . Then: 2y = −2y+x⇒x = 4y [2]\displaystyle \text{Then: }\;2y \;=\;-2y + x \quad\Rightarrow\quad x \:=\:4y\;\;[2]Then: 2y=−2y+x⇒x=4y[2] Substitute into [1]: (4y)y−y2 = 1⇒3y2 = 1⇒y2 = 13⇒y = ±13\displaystyle \text{Substitute into [1]: }\;(4y)y - y^2 \:=\:1 \quad\Rightarrow\quad 3y^2 \:=\:1 \quad\Rightarrow\quad y^2 \:=\:\frac{1}{3} \quad\Rightarrow\quad y \:=\:\pm\frac{1}{\sqrt{3}}Substitute into [1]: (4y)y−y2=1⇒3y2=1⇒y2=31⇒y=±31 Substitute into [2]: x = 4(±13) = ±43\displaystyle \text{Substitute into [2]: }\;x \:=\:4\left(\pm\frac{1}{\sqrt{3}}\right) \:=\:\pm\frac{4}{\sqrt{3}}Substitute into [2]: x=4(±31)=±34 Therefore: (43, 13) and (−43, −13)\displaystyle \text{Therefore: }\;\left(\frac{4}{\sqrt{3}},\;\frac{1}{\sqrt{3}}\right) \;\text{ and }\: \left(-\frac{4}{\sqrt{3}},\;-\frac{1}{\sqrt{3}}\right)Therefore: (34,31) and (−34,−31)
Hello, pierre! Find all points on the curve xy−y2 = 1 [1]\displaystyle \text{Find all points on the curve }\:xy-y^2\:=\:1\;\;[1]Find all points on the curve xy−y2=1[1] . . where the slope of the tangent line is -12\displaystyle \text{where the slope of the tangent line is }\,\text{-}\tfrac{1}{2}where the slope of the tangent line is -21 Click to expand... Differentiate implicitly:\displaystyle \text{Differentiate implicitly:}Differentiate implicitly: . . xdydx+y−2ydydx = 0⇒2ydydx−xdydx = y⇒(2y−x)dydx = y\displaystyle x\tfrac{dy}{dx} + y - 2y\tfrac{dy}{dx} \:=\:0 \quad\Rightarrow\quad 2y\tfrac{dy}{dx} - x\tfrac{dy}{dx} \:=\:y \quad\Rightarrow\quad (2y-x)\tfrac{dy}{dx} \:=\:yxdxdy+y−2ydxdy=0⇒2ydxdy−xdxdy=y⇒(2y−x)dxdy=y . . Hence: dydx = y2y−x\displaystyle \text{Hence: }\;\frac{dy}{dx} \;=\;\frac{y}{2y-x}Hence: dxdy=2y−xy Then: y2y−x = −12\displaystyle \text{Then: }\;\frac{y}{2y-x} \;=\;-\frac{1}{2}Then: 2y−xy=−21 . . Then: 2y = −2y+x⇒x = 4y [2]\displaystyle \text{Then: }\;2y \;=\;-2y + x \quad\Rightarrow\quad x \:=\:4y\;\;[2]Then: 2y=−2y+x⇒x=4y[2] Substitute into [1]: (4y)y−y2 = 1⇒3y2 = 1⇒y2 = 13⇒y = ±13\displaystyle \text{Substitute into [1]: }\;(4y)y - y^2 \:=\:1 \quad\Rightarrow\quad 3y^2 \:=\:1 \quad\Rightarrow\quad y^2 \:=\:\frac{1}{3} \quad\Rightarrow\quad y \:=\:\pm\frac{1}{\sqrt{3}}Substitute into [1]: (4y)y−y2=1⇒3y2=1⇒y2=31⇒y=±31 Substitute into [2]: x = 4(±13) = ±43\displaystyle \text{Substitute into [2]: }\;x \:=\:4\left(\pm\frac{1}{\sqrt{3}}\right) \:=\:\pm\frac{4}{\sqrt{3}}Substitute into [2]: x=4(±31)=±34 Therefore: (43, 13) and (−43, −13)\displaystyle \text{Therefore: }\;\left(\frac{4}{\sqrt{3}},\;\frac{1}{\sqrt{3}}\right) \;\text{ and }\: \left(-\frac{4}{\sqrt{3}},\;-\frac{1}{\sqrt{3}}\right)Therefore: (34,31) and (−34,−31)