How to find all points on the curve xy-y^2=1 where the slope of the tangent line is -1/2
P pierre New member Joined Aug 1, 2010 Messages 1 Aug 1, 2010 #1 How to find all points on the curve xy-y^2=1 where the slope of the tangent line is -1/2
mmm4444bot Super Moderator Joined Oct 6, 2005 Messages 10,962 Aug 2, 2010 #2 Use the Quadratic Formula to solve the given equation for y. You'll get two expressions in x. Set the derivative of each equal to -1/2, and solve for x.
Use the Quadratic Formula to solve the given equation for y. You'll get two expressions in x. Set the derivative of each equal to -1/2, and solve for x.
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Aug 2, 2010 #3 Hello, pierre! \(\displaystyle \text{Find all points on the curve }\:xy-y^2\:=\:1\;\;[1]\) . . \(\displaystyle \text{where the slope of the tangent line is }\,\text{-}\tfrac{1}{2}\) Click to expand... \(\displaystyle \text{Differentiate implicitly:}\) . . \(\displaystyle x\tfrac{dy}{dx} + y - 2y\tfrac{dy}{dx} \:=\:0 \quad\Rightarrow\quad 2y\tfrac{dy}{dx} - x\tfrac{dy}{dx} \:=\:y \quad\Rightarrow\quad (2y-x)\tfrac{dy}{dx} \:=\:y\) . . \(\displaystyle \text{Hence: }\;\frac{dy}{dx} \;=\;\frac{y}{2y-x}\) \(\displaystyle \text{Then: }\;\frac{y}{2y-x} \;=\;-\frac{1}{2}\) . . \(\displaystyle \text{Then: }\;2y \;=\;-2y + x \quad\Rightarrow\quad x \:=\:4y\;\;[2]\) \(\displaystyle \text{Substitute into [1]: }\;(4y)y - y^2 \:=\:1 \quad\Rightarrow\quad 3y^2 \:=\:1 \quad\Rightarrow\quad y^2 \:=\:\frac{1}{3} \quad\Rightarrow\quad y \:=\:\pm\frac{1}{\sqrt{3}}\) \(\displaystyle \text{Substitute into [2]: }\;x \:=\:4\left(\pm\frac{1}{\sqrt{3}}\right) \:=\:\pm\frac{4}{\sqrt{3}}\) \(\displaystyle \text{Therefore: }\;\left(\frac{4}{\sqrt{3}},\;\frac{1}{\sqrt{3}}\right) \;\text{ and }\: \left(-\frac{4}{\sqrt{3}},\;-\frac{1}{\sqrt{3}}\right)\)
Hello, pierre! \(\displaystyle \text{Find all points on the curve }\:xy-y^2\:=\:1\;\;[1]\) . . \(\displaystyle \text{where the slope of the tangent line is }\,\text{-}\tfrac{1}{2}\) Click to expand... \(\displaystyle \text{Differentiate implicitly:}\) . . \(\displaystyle x\tfrac{dy}{dx} + y - 2y\tfrac{dy}{dx} \:=\:0 \quad\Rightarrow\quad 2y\tfrac{dy}{dx} - x\tfrac{dy}{dx} \:=\:y \quad\Rightarrow\quad (2y-x)\tfrac{dy}{dx} \:=\:y\) . . \(\displaystyle \text{Hence: }\;\frac{dy}{dx} \;=\;\frac{y}{2y-x}\) \(\displaystyle \text{Then: }\;\frac{y}{2y-x} \;=\;-\frac{1}{2}\) . . \(\displaystyle \text{Then: }\;2y \;=\;-2y + x \quad\Rightarrow\quad x \:=\:4y\;\;[2]\) \(\displaystyle \text{Substitute into [1]: }\;(4y)y - y^2 \:=\:1 \quad\Rightarrow\quad 3y^2 \:=\:1 \quad\Rightarrow\quad y^2 \:=\:\frac{1}{3} \quad\Rightarrow\quad y \:=\:\pm\frac{1}{\sqrt{3}}\) \(\displaystyle \text{Substitute into [2]: }\;x \:=\:4\left(\pm\frac{1}{\sqrt{3}}\right) \:=\:\pm\frac{4}{\sqrt{3}}\) \(\displaystyle \text{Therefore: }\;\left(\frac{4}{\sqrt{3}},\;\frac{1}{\sqrt{3}}\right) \;\text{ and }\: \left(-\frac{4}{\sqrt{3}},\;-\frac{1}{\sqrt{3}}\right)\)