How to find all points on a curve

pierre

New member
Joined
Aug 1, 2010
Messages
1
How to find all points on the curve xy-y^2=1 where the slope of the tangent line is -1/2
 
Use the Quadratic Formula to solve the given equation for y. You'll get two expressions in x.

Set the derivative of each equal to -1/2, and solve for x.
 
Hello, pierre!

Find all points on the curve xyy2=1    [1]\displaystyle \text{Find all points on the curve }\:xy-y^2\:=\:1\;\;[1]

. . where the slope of the tangent line is -12\displaystyle \text{where the slope of the tangent line is }\,\text{-}\tfrac{1}{2}

Differentiate implicitly:\displaystyle \text{Differentiate implicitly:}

. . xdydx+y2ydydx=02ydydxxdydx=y(2yx)dydx=y\displaystyle x\tfrac{dy}{dx} + y - 2y\tfrac{dy}{dx} \:=\:0 \quad\Rightarrow\quad 2y\tfrac{dy}{dx} - x\tfrac{dy}{dx} \:=\:y \quad\Rightarrow\quad (2y-x)\tfrac{dy}{dx} \:=\:y

. . Hence:   dydx  =  y2yx\displaystyle \text{Hence: }\;\frac{dy}{dx} \;=\;\frac{y}{2y-x}


Then:   y2yx  =  12\displaystyle \text{Then: }\;\frac{y}{2y-x} \;=\;-\frac{1}{2}

. . Then:   2y  =  2y+xx=4y    [2]\displaystyle \text{Then: }\;2y \;=\;-2y + x \quad\Rightarrow\quad x \:=\:4y\;\;[2]


Substitute into [1]:   (4y)yy2=13y2=1y2=13y=±13\displaystyle \text{Substitute into [1]: }\;(4y)y - y^2 \:=\:1 \quad\Rightarrow\quad 3y^2 \:=\:1 \quad\Rightarrow\quad y^2 \:=\:\frac{1}{3} \quad\Rightarrow\quad y \:=\:\pm\frac{1}{\sqrt{3}}

Substitute into [2]:   x=4(±13)=±43\displaystyle \text{Substitute into [2]: }\;x \:=\:4\left(\pm\frac{1}{\sqrt{3}}\right) \:=\:\pm\frac{4}{\sqrt{3}}


Therefore:   (43,  13)   and (43,  13)\displaystyle \text{Therefore: }\;\left(\frac{4}{\sqrt{3}},\;\frac{1}{\sqrt{3}}\right) \;\text{ and }\: \left(-\frac{4}{\sqrt{3}},\;-\frac{1}{\sqrt{3}}\right)

 
Top