Please explain to me how to find a direct transitive closure for x2 on this adjacency matrix?
\(\displaystyle \begin{array}{c|c|c|c|c|c|c|} &x_1&x_2&x_3&x_4&x_5&x_6 \\ \hline x_1&0&1&1&0&0&0 \\ \hline x_2&0&1&0&0&1&0 \\ \hline x_3&0&0&0&0&0&0 \\ \hline x_4&0&0&1&0&0&0 \\ \hline x_5&1&0&0&1&0&0 \\ \hline x_6&1&0&0&0&1&1 \\ \hline \end{array}\) . . . . . \(\displaystyle \begin{array}{|c|}T\, +\, x2 \\ \hline ? \\ \hline ? \\ \hline ? \\ \hline ? \\ \hline ? \\ \hline ? \\ \hline \end{array}\)
I don't understand.
\(\displaystyle \begin{array}{c|c|c|c|c|c|c|} &x_1&x_2&x_3&x_4&x_5&x_6 \\ \hline x_1&0&1&1&0&0&0 \\ \hline x_2&0&1&0&0&1&0 \\ \hline x_3&0&0&0&0&0&0 \\ \hline x_4&0&0&1&0&0&0 \\ \hline x_5&1&0&0&1&0&0 \\ \hline x_6&1&0&0&0&1&1 \\ \hline \end{array}\) . . . . . \(\displaystyle \begin{array}{|c|}T\, +\, x2 \\ \hline ? \\ \hline ? \\ \hline ? \\ \hline ? \\ \hline ? \\ \hline ? \\ \hline \end{array}\)
I don't understand.
Attachments
Last edited by a moderator: