How to evaluate an integral along a path?

G

Guest

Guest
Evaluate (x2+y2)dz\displaystyle \int{(x^2 \,+\, y^2)\,dz} along the path C:x=t2,y=1t,1t3.\displaystyle C:\, x\,=\,t^2,\, y\,=\,\frac{1}{t},\,1\,\leq\, t\,\leq\, 3.

Any help would be greatly appreciated
 
\(\displaystyle \L
\begin{array}{l}
\int {(x^2 + y^2 )dz = }\int (x^2 + y^2 )(dx + idy) = \int {(x^2 + y^2 )dx} + i\int {(x^2 + y^2 )dy} \\
\\
\int\limits_1^3 {\left( {t^4 + \frac{1}{{t^2 }}} \right)\left( {2tdt} \right)} + i\int\limits_1^3 {\left( {t^4 + \frac{1}{{t^2 }}} \right)\left( {\frac{{ - 1}}{{t^2 }}dt} \right)} \\
\end{array}\)
 
Top