L'Hopital's rule isn't going to help here.
[math]\lim_{x \to \infty} \dfrac{x e^x ln(x)}{e^{x^2}} = \lim_{x \to \infty} \dfrac{(x + 1) ln(x) + 1) e^x }{2 x e^{x^2} } = \lim_{x \to \infty } \dfrac{ (2x + (x + 2) x ~ ln(x) + 1) e^x }{ 2 (2x^2 + 1) e^{x^2} }[/math]
We simply don't have the correct cancellations to make the rule useful.
This is the best I can do. It's probably not the most elegant way. (And it might even be wrong. I need a Math person to check the steps.)
For the sake of clarity I'll do this in two steps.
1) For sufficiently large x, [math]ln(x) < x[/math]. So we can say that
[math]\lim_{x \to \infty } \dfrac{x e^x ln(x)}{e^{x^2}} < \lim_{x \to \infty } \dfrac{x^2 e^x }{ e^{x^2} }[/math]
2) For sufficiently large x, [math]x^2 < e^x[/math]. So we can say that
[math]\lim_{x \to \infty } \dfrac{x^2 e^x }{ e^{x^2} } < \lim_{x \to \infty } \dfrac{e^{2x} }{ e^{x^2} } = \lim_{x \to \infty } \dfrac{1}{ e^{x^2 - 2x} } =0[/math].
Stringing these together:
[math]\lim_{x \to \infty } \dfrac{x e^x ln(x)}{e^{x^2}} < \lim_{x \to \infty } \dfrac{x^2 e^x }{ e^{x^2} } < \lim_{x \to \infty } \dfrac{e^{2x} }{ e^{x^2} } = 0[/math]
So finally
[math]\lim_{x \to \infty } \dfrac{x e^x ln(x)}{e^{x^2}} = 0[/math]
-Dan