Solving this by u-substitution is possible if you do it correctly, but why bother. It OBVIOUSLY will involve a nightmare of error-prone algebra.
[math]
y = \dfrac{x^3 + 3x^2 + 2x + 1}{x - 1} = \dfrac{(x^3 - x^2) + 4(x^2 - x) + 6(x - 1) + 7}{(x -1)} = \\
x^2 + 4x + 6 + \dfrac{7}{x - 1}.\\
\therefore \ \int y \ dx = \int x^2 \ dx + 4\int x \ dx + \int 6 \ dx + 7 \int \dfrac{dx}{x - 1}
[/math]
It is possible to make an error in algebra in that, but you end up with a sum of very easy integrals.
You can of course do a u-substitution.
[math]
\text {Set } u = x - 1 \implies dx = du, \ x = u + 1, \text { and }\\
y = \dfrac{(u + 1)^3 + 3(u + 1)^2 + 2(u + 1) + 1}{u} =\\
\dfrac{u^3 + 3u^2 + 3u + 1 + 3u^2 + 6u + 3 + 2u + 2 + 1}{u} =\\
\dfrac{u^3 + 6u^2 + 11u + 7}{u} = u^2 + 6u + 11 + \dfrac{7}{u} =\\
(x - 1)^2 + 6(x - 1) + 11 + \dfrac{7}{x - 1} = \\
x^2 - 2x + 1 + 6x - 6 + 11 + \dfrac{7}{x - 1} =\\
x^2 + 4x + 6 + \dfrac{7}{x - 1}.
[/math]
More work and thus more opportunity for error.
Think before you choose a technique.