There
is, in fact, a shortcut for finding partial fractions when the denominators are
distinct linear factors:
View attachment 38013
(By the way, technically you omitted the denominator on the first line, but the ultimate equation is correct.)
What you do is to set [imath]s[/imath] to each of the zeros of the denominators, one at a time:
[imath]s=1[/imath]: [imath](1)^2-6(1)+10=A(1-2){\color{Red}(1-1)}+B(1-3){\color{Red}(1-1)}+C(1-3)(1-2)\implies 5={\color{Red}0}+{\color{Red}0}+2C\implies C=5/2[/imath]
[imath]s=2[/imath]: [imath](2)^2-6(2)+10=A{\color{Red}(2-2)}(2-1)+B(2-3)(2-1)+C(2-3){\color{Red}(2-2)}\implies 2={\color{Red}0}-B+{\color{Red}0}\implies B=-2[/imath]
[imath]s=3[/imath]: [imath](3)^2-6(3)+10=A(3-2)(3-1)+B{\color{Red}(3-3)}(3-1)+C{\color{Red}(3-3)}(3-2)\implies 1=2A+{\color{Red}0}+{\color{Red}0}\implies A=1/2[/imath]