How many real number a<-1 satisfies the following?
[math]∫_0^1\dfrac{1}{x^2+a}=\dfrac{1}{2\sqrt{-a}}ln\left(\dfrac{1}{2}\right)?[/math]I've tried subtitute [imath]a=-b[/imath]
[math]∫_0^1\dfrac{1}{(x-\sqrt{b})(x+\sqrt{b})}dx=\dfrac{1}{2\sqrt{b}}(ln\left|\dfrac{1-\sqrt{b}}{1+\sqrt{b}}\right|-ln|-1|) =\dfrac{1}{2\sqrt{-a}}ln\left|\dfrac{1-\sqrt{b}}{1+\sqrt{b}}\right|[/math][math]=>\left|\dfrac{1-\sqrt{b}}{1+\sqrt{b}}\right|=\frac{1}{2}<=>b= \frac{1}{9} \text{ or } b = 9[/math][math]a=-b\text{ and } a<-1=>b>1 =>b=9<=>a=-9[/math]Was this right ? I posted this because I want to ask for the complex number method or better method^^
[math]∫_0^1\dfrac{1}{x^2+a}=\dfrac{1}{2\sqrt{-a}}ln\left(\dfrac{1}{2}\right)?[/math]I've tried subtitute [imath]a=-b[/imath]
[math]∫_0^1\dfrac{1}{(x-\sqrt{b})(x+\sqrt{b})}dx=\dfrac{1}{2\sqrt{b}}(ln\left|\dfrac{1-\sqrt{b}}{1+\sqrt{b}}\right|-ln|-1|) =\dfrac{1}{2\sqrt{-a}}ln\left|\dfrac{1-\sqrt{b}}{1+\sqrt{b}}\right|[/math][math]=>\left|\dfrac{1-\sqrt{b}}{1+\sqrt{b}}\right|=\frac{1}{2}<=>b= \frac{1}{9} \text{ or } b = 9[/math][math]a=-b\text{ and } a<-1=>b>1 =>b=9<=>a=-9[/math]Was this right ? I posted this because I want to ask for the complex number method or better method^^
Last edited by a moderator: