How many answers do I have?

Fullmetal_Hye

New member
Joined
Jul 19, 2006
Messages
9
Solve for x. -2pi<x<2pi

1) sin(x)cos(x)=1/4
2sin(x)cos(x)=1/2
sin2(x)=1/2
2x=pi/6, 5pi/6, ??

2) cos4x=rad(3)/2
4x=pi/6, ??

Mm I don't very well know which quadrants I should consider[/img]
 
If you HAVE 2x and you WANT \(\displaystyle \L\,-2\pi \le x \lt 2\pi\), you had better examin solutions here \(\displaystyle \L\,-4\pi \le 2x \lt 4\pi\)
 
Hello, Fullmetal_Hye!

Solve for x,    2πx2π\displaystyle x,\;\;-2\pi \,\leq x\,\leq\,2\pi

1)  sinxcosx=14\displaystyle 1)\;\sin x\cos x \:=\:\frac{1}{4}
2sinxcosx=12\displaystyle 2\sin x\cos x \:=\:\frac{1}{2}
sin2x=12\displaystyle \sin2x \:=\:\frac{1}{2}
2x=π6,  5π6,  13π6,  17π6\displaystyle 2x\:=\:\frac{\pi}{6},\;\frac{5\pi}{6},\;\frac{13\pi}{6},\;\frac{17\pi}{6}

Therefore: x=π12,  5π12,  13π12,  17π12\displaystyle x \:=\:\frac{\pi}{12},\;\frac{5\pi}{12},\;\frac{13\pi}{12},\;\frac{17\pi}{12}


2)  cos4x=32\displaystyle 2)\;\cos4x \:=\:\frac{\sqrt{3}}{2}
4x=π6,  11π6,  13π6,  23π6,  25π6,  35π6,  37π6,  47π6\displaystyle 4x\:=\:\frac{\pi}{6},\;\frac{11\pi}{6},\;\frac{13\pi}{6},\;\frac{23\pi}{6},\;\frac{25\pi}{6},\;\frac{35\pi}{6},\;\frac{37\pi}{6},\;\frac{47\pi}{6}

Then: x=π24,  11π24,  13π24,  23π24,  25π24,  35π24,  37π24,  47π24\displaystyle x\:=\:\frac{\pi}{24},\;\frac{11\pi}{24},\;\frac{13\pi}{24},\;\frac{23\pi}{24},\;\frac{25\pi}{24},\;\frac{35\pi}{24},\;\frac{37\pi}{24},\;\frac{47\pi}{24}


I don't very well know which quadrants I should consider.

I understand your problem: you don't know "how far to go".


If we had, for example, sinx=12\displaystyle \sin x\,=\,\frac{1}{2}, we know that: \(\displaystyle x\:=\:\frac{\pi}{6},\;\frac{\5\pi}{6}\)

    \displaystyle \;\;That is, we know there are two answers on the interval [0,2π]\displaystyle [0,2\pi]


If we had: sin\displaystyle \sin2x=12\displaystyle x\,=\,\frac{1}{2}, we would "go around twice".

    \displaystyle \;\;We'd have: 2x=π6,  5π6\displaystyle \,2x\:=\:\frac{\pi}{6},\;\frac{5\pi}{6} and 13π6,  17π6\displaystyle \frac{13\pi}{6},\;\frac{17\pi}{6}
(We get the last two by adding 2π\displaystyle 2\pi to the first two.)

Solve for x\displaystyle x (divide by 2): x  =  π12,  5π12,  13π12,  17π12\displaystyle \,x\;=\;\frac{\pi}{12},\;\frac{5\pi}{12},\;\frac{13\pi}{12},\;\frac{17\pi}{12}
(Note that the last one is still less than 2π\displaystyle 2\pi.)


If we have: sin\displaystyle \sin3x=12\displaystyle x\,=\,\frac{1}{2}, we would "go around three times:.

    \displaystyle \;\;We'd have: π6,  5π6\displaystyle \,\frac{\pi}{6},\;\frac{5\pi}{6} and 13π6,  17π6\displaystyle \frac{13\pi}{6},\;\frac{17\pi}{6} and 25π6,  29π6\displaystyle \frac{25\pi}{6},\;\frac{29\pi}{6}

Solve for x\displaystyle x (divide by 3): x=π18,  5π18,  13π18,  17π18,  25π18,  29π18\displaystyle \,x\:=\:\frac{\pi}{18},\;\frac{5\pi}{18},\;\frac{13\pi}{18},\;\frac{17\pi}{18},\;\frac{25\pi}{18},\;\frac{29\pi}{18}


See how it works?

 
Top