Hello, Faith54!
I finished this problem, but I don't think I did it right.
It's hard to see your work from here, but I see two mistakes:
\(\displaystyle \;\;\)you played the \(\displaystyle K\spade\) instead of \(\displaystyle 5\club\)
\(\displaystyle \;\;\)and you transposed to \(\displaystyle G\) minor instead of \(\displaystyle B\flat\) major.
But seriously . . . we have: \(\displaystyle \,2\cdot\tan^22\theta \:= \:3\cdot\sec2\theta\)
Since \(\displaystyle \tan^2A\:=\:\sec^2A\,-\,1\), we have: \(\displaystyle \:2(\sec^22\theta\,-\,1)\;=\;2\cdot\sec2\theta\)
And we have the quadratic: \(\displaystyle \,2\cdot\sec^22\theta\,-\,3\cdot\sec2\theta\,-\,2\;=\;0\)
\(\displaystyle \;\;\)which factors: \(\displaystyle \
2\cdot\sec2\theta\,+\,1)(\sec2\theta\,-\,2)\;=\;0\)
And we have two equations to solve:
\(\displaystyle \;\;2\cdot\sec2\theta\,+\,1\:=\:0\;\;\Rightarrow\;\;\sec2\theta\,=\,-\frac{1}{2}\;\) . . . impossible! \(\displaystyle \;|\sec A|\,\geq\,1\)
\(\displaystyle \;\;\sec2\theta\,-\,2\:=\:0\;\;\Rightarrow\;\;\sec2\theta\,=\,2\;\;\Rightarrow\;\;2\theta\:=\:\pm\frac{\pi}{3}\,+\,2\pi n\;\;\Rightarrow\;\;\theta\:=\:\pm\frac{\pi}{6}\,+\,\pi n\)