I am told this identity:
[math]\sin(x) = \frac{e^{ix} - e^{-ix} }{2i}[/math]
How can I use this identity to integrate sin(x) ?
[math]\int{\sin(x)}dx \longrightarrow \int{\frac{e^{ix} - e^{-ix} }{2i}}dx \longrightarrow \frac{1}{2i}\int{e^{ix}}dx - \frac{1}{2i} \int{e^{-ix}}dx[/math]
I don't know how integration works if there are imaginary numbers involved.
plz help thank
[math]\sin(x) = \frac{e^{ix} - e^{-ix} }{2i}[/math]
How can I use this identity to integrate sin(x) ?
[math]\int{\sin(x)}dx \longrightarrow \int{\frac{e^{ix} - e^{-ix} }{2i}}dx \longrightarrow \frac{1}{2i}\int{e^{ix}}dx - \frac{1}{2i} \int{e^{-ix}}dx[/math]
I don't know how integration works if there are imaginary numbers involved.
plz help thank