How do I find the integral of sec(x) dx?

pamw

New member
Joined
Jan 10, 2007
Messages
8
How do I figure out the integral of sec(x) dx?

My mind is blanking. :oops:
 
One way is a little trick:

\(\displaystyle \L\\\int{sec(x)}dx=\int{sec(x)\frac{sec(x)+tan(x)}{sec(x)+tan(x)}}dx\)

=\(\displaystyle \L\\\int\frac{sec^{2}(x)+sec(x)tan(x)}{sec(x)+tan(x)}dx\)

Let \(\displaystyle u=sec(x)+tan(x), \;\ du=(sec^{2}(x)+sec(x)tan(x))dx\)

\(\displaystyle \L\\\int\frac{1}{u}du=ln|u|\)

\(\displaystyle \L\\=ln|sec(x)+tan(x)|+C\)
 
Top