After you find that [imath]A=-\frac{1}{2}[/imath], update the partial fraction equation:
[math]\frac{1-2x}{(x-1)^2(x^2+1)}=\frac{-\frac{1}{2}}{(x-1)^2}+\frac{B}{x-1}+\frac{Cx+D}{x^2+1}[/math]Move the known [imath]A[/imath] to the L.H.S.:
[math]\begin{aligned} \frac{1-2x}{(x-1)^2(x^2+1)}+\frac{\frac{1}{2}}{(x-1)^2}&=\frac{B}{x-1}+\frac{Cx+D}{x^2+1}\\ \frac{1-2x}{(x-1)^2(x^2+1)}+\frac{\frac{1}{2}(x^2+1)}{(x-1)^2(x^2+1)}&=\\ \frac{1-2x+\frac{1}{2}x^2+\frac{1}{2}}{(x-1)^2(x^2+1)}&=\\ \frac{\frac{1}{2}x^2-2x+\frac{3}{2}}{(x-1)^2(x^2+1)}&=\\ \frac{\frac{1}{2}(x^2-4x+3)}{(x-1)^2(x^2+1)}&=\\ \frac{\frac{1}{2}\cancel{(x-1)}(x-3)}{(x-1)^{\cancel{2}}(x^2+1)}&=\\ \frac{\frac{1}{2}(x-3)}{(x-1)(x^2+1)}&=\frac{B}{x-1}+\frac{Cx+D}{x^2+1}\\ \end{aligned}[/math]
Expand this new equation (like you did before), and let [imath]x=1[/imath]. You'll see that [imath]B=-\frac{1}{2}[/imath]:
Move the known [imath]B[/imath] to the L.H.S.:
[math]\begin{aligned} \frac{\frac{1}{2}(x-3)}{(x-1)(x^2+1)}&=\frac{-\frac{1}{2}}{x-1}+\frac{Cx+D}{x^2+1}\\ \frac{\frac{1}{2}(x-3)}{(x-1)(x^2+1)}+\frac{\frac{1}{2}}{x-1}&=\frac{Cx+D}{x^2+1}\\ \frac{\frac{1}{2}(x-3)}{(x-1)(x^2+1)}+\frac{\frac{1}{2}(x^2+1)}{(x-1)(x^2+1)}&=\\ \frac{\frac{1}{2}x-\frac{3}{2}}{(x-1)(x^2+1)}+\frac{\frac{1}{2}x^2+\frac{1}{2}}{(x-1)(x^2+1)}&=\\ \frac{\frac{1}{2}x^2+\frac{1}{2}x-1}{(x-1)(x^2+1)}&=\\ \frac{\cancel{(x-1)}(\frac{1}{2}x+1)}{\cancel{(x-1)}(x^2+1)}&=\\ \frac{\frac{1}{2}x+1}{x^2+1}&=\frac{Cx+D}{x^2+1}\\ \end{aligned}[/math]
Now it's obvious that [imath]C=\frac{1}{2}[/imath] and [imath]D=1[/imath].
Next, integrate!
[math]\int\left[\frac{-\frac{1}{2}}{(x-1)^2}+\frac{-\frac{1}{2}}{x-1}+\frac{\frac{1}{2}x+1}{x^2+1}\right]\text{d}x[/math]