Sin 2 theta = cos 7pi/4
A arthur ohlsten Full Member Joined Feb 20, 2005 Messages 852 Feb 24, 2007 #2 sin 2@=cos 7pi/4 2pi=360 degrees pi/4= 45 degrees 7pi/4=315 degrees 7pi/4=-45 degrees cos 7pi/4 = 1/sqrt2 sin 2@= 2 sin@ cos@ sin2@=cos 7pi/4 2 sin@ cos@=1/sqrt2 both sides 4 sin^2@ cos^2@= 1/2 sin^2@ cos^2@=1/8 but cos^2@= 1-sin^2@ substitute sin^2@[1-sin^2@]= 1/8 -sin^4@ +sin^2@=1/8 sin^4@ - sin^2@ + 1/8=0 let sin^2@=x x^2-x+1/8=0 by quadratic equation x=1+/- [1-1/2]^1/2 x=1+/- [1/2]^1/2 x=1+/-1/2 [2]^1/2 x=1+/-.707 x=1.707 OR x=.293 sin^2 @= 1.707 OR sin^2 @=.293 but sin can't be greater than 1 so sin^2 can't exceed 1 or sin^2@=1.707 is extraneous answer sin^2@=.293 sin@=+/- sqrt .293 sin@=+/- .5413 @=+/- 33 degrees please check for errors Arthur
sin 2@=cos 7pi/4 2pi=360 degrees pi/4= 45 degrees 7pi/4=315 degrees 7pi/4=-45 degrees cos 7pi/4 = 1/sqrt2 sin 2@= 2 sin@ cos@ sin2@=cos 7pi/4 2 sin@ cos@=1/sqrt2 both sides 4 sin^2@ cos^2@= 1/2 sin^2@ cos^2@=1/8 but cos^2@= 1-sin^2@ substitute sin^2@[1-sin^2@]= 1/8 -sin^4@ +sin^2@=1/8 sin^4@ - sin^2@ + 1/8=0 let sin^2@=x x^2-x+1/8=0 by quadratic equation x=1+/- [1-1/2]^1/2 x=1+/- [1/2]^1/2 x=1+/-1/2 [2]^1/2 x=1+/-.707 x=1.707 OR x=.293 sin^2 @= 1.707 OR sin^2 @=.293 but sin can't be greater than 1 so sin^2 can't exceed 1 or sin^2@=1.707 is extraneous answer sin^2@=.293 sin@=+/- sqrt .293 sin@=+/- .5413 @=+/- 33 degrees please check for errors Arthur
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Feb 24, 2007 #3 Hello, americo74! sin2θ = cos(7π4)\displaystyle \sin2\theta\:=\:\cos\left(\frac{7\pi}{4}\right)sin2θ=cos(47π) Click to expand... First of all, we know that: cos(7π4) = 22\displaystyle \:\cos\left(\frac{7\pi}{4}\right)\:=\:\frac{\sqrt{2}}{2}cos(47π)=22 The equation becomes: sin2θ = 22 ⇒ 2θ = sin−1(22)\displaystyle \:\sin2\theta\:=\:\frac{\sqrt{2}}{2}\;\;\Rightarrow\;\;2\theta\:=\:\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)sin2θ=22⇒2θ=sin−1(22) The angles whose sine is 22\displaystyle \frac{\sqrt{2}}{2}22 are: π4 + 2πn, 3π4 + 2πn \displaystyle \,\frac{\pi}{4}\,+\,2\pi n,\:\frac{3\pi}{4}\,+\,2\pi n\;4π+2πn,43π+2πn for any integer n\displaystyle nn So we have: 2θ = {π4 + 2πn, 3π4 + 2πn}\displaystyle \:2\theta\:=\:\left\{\frac{\pi}{4}\,+\,2\pi n,\:\frac{3\pi}{4}\,+\,2\pi n\right\}2θ={4π+2πn,43π+2πn} Therefore: \(\displaystyle \L\:\theta\:=\:\left\{\frac{\pi}{8}\,+\,\pi n,\;\frac{3\pi}{8}\,+\,\pi n\right\}\;\;\) for any integer n.\displaystyle n.n.
Hello, americo74! sin2θ = cos(7π4)\displaystyle \sin2\theta\:=\:\cos\left(\frac{7\pi}{4}\right)sin2θ=cos(47π) Click to expand... First of all, we know that: cos(7π4) = 22\displaystyle \:\cos\left(\frac{7\pi}{4}\right)\:=\:\frac{\sqrt{2}}{2}cos(47π)=22 The equation becomes: sin2θ = 22 ⇒ 2θ = sin−1(22)\displaystyle \:\sin2\theta\:=\:\frac{\sqrt{2}}{2}\;\;\Rightarrow\;\;2\theta\:=\:\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)sin2θ=22⇒2θ=sin−1(22) The angles whose sine is 22\displaystyle \frac{\sqrt{2}}{2}22 are: π4 + 2πn, 3π4 + 2πn \displaystyle \,\frac{\pi}{4}\,+\,2\pi n,\:\frac{3\pi}{4}\,+\,2\pi n\;4π+2πn,43π+2πn for any integer n\displaystyle nn So we have: 2θ = {π4 + 2πn, 3π4 + 2πn}\displaystyle \:2\theta\:=\:\left\{\frac{\pi}{4}\,+\,2\pi n,\:\frac{3\pi}{4}\,+\,2\pi n\right\}2θ={4π+2πn,43π+2πn} Therefore: \(\displaystyle \L\:\theta\:=\:\left\{\frac{\pi}{8}\,+\,\pi n,\;\frac{3\pi}{8}\,+\,\pi n\right\}\;\;\) for any integer n.\displaystyle n.n.
G Guest Guest Mar 3, 2007 #4 one must always thank people like you...so THANK YOU I appreciate your help...