Hello, dimon!
Here's a variation with a different punchline . . .
(1) We have: . . . . . . . . . . \(\displaystyle A\:=\:B\)
(2) Multiply by \(\displaystyle A:\) . . . . . . .\(\displaystyle A^2\:=\:AB\)
(3) Subtract \(\displaystyle B^2:\;\;\;\;A^2\,-\,B^2\:=\:AB\,-\,B^2\)
(4) Factor: \(\displaystyle \;\,(A\,+\,B)(A\,-\,B) \:= \:B(A\,-\,B)\)
(5) Divide by \(\displaystyle (A-B):\;\;A\,+\,B\: = \:B\)
(6) In (1) we had: \(\displaystyle A\,=\,B\)
\(\displaystyle \;\;\;\) so (5) becomes: \(\displaystyle \;A\,+\,A\:=\:A\)
(7) Simplify: . . . . . . . . . \(\displaystyle 2A\:=\:A\)
(8) Divide by \(\displaystyle A\): . . . . . . . .2 = 1 . . . ta-DAA!