homogeneous differential equations

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,537
here is the question

Solve X=[31829]X\displaystyle \bold{X}' = \begin{bmatrix}3 & -18 \\2 & -9 \end{bmatrix}\bold{X}.

my attemb
Z=AλI=[31829]λ[1001]=[31829]+[λ00λ]=[3λ1829λ]\displaystyle \bold{Z} = \bold{A} - \lambda\bold{I} = \begin{bmatrix}3 & -18 \\2 & -9 \end{bmatrix} - \lambda\begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix} = \begin{bmatrix}3 & -18 \\2 & -9 \end{bmatrix} + \begin{bmatrix}-\lambda & 0 \\0 & -\lambda \end{bmatrix} = \begin{bmatrix}3 - \lambda & -18 \\2 & -9 - \lambda \end{bmatrix}

det(Z)=(3λ)(9λ)18(2)=273λ+9λ+λ2+36=λ2+6λ+9=(λ+3)(λ+3)=(λ+3)2=0\displaystyle (\bold{Z}) = (3 - \lambda)(-9 - \lambda) - -18(2) = -27 -3\lambda + 9\lambda + \lambda^2 + 36 = \lambda^2 + 6\lambda + 9 = (\lambda + 3)(\lambda + 3) = (\lambda + 3)^2 = 0

this mean λ1=λ2=3\displaystyle \lambda_1 = \lambda_2 = -3

(Aλ1I)K=[3λ11829λ1][k1k2]=[3318293][k1k2]=[61826][k1k2]=[00]\displaystyle (\bold{A} - \lambda_1\bold{I})\bold{K} = \begin{bmatrix}3 - \lambda_1 & -18 \\2 & -9 - \lambda_1 \end{bmatrix}\begin{bmatrix}k_1 \\k_2 \end{bmatrix} = \begin{bmatrix}3 - -3 & -18 \\2 & -9 - -3 \end{bmatrix}\begin{bmatrix}k_1 \\k_2 \end{bmatrix} = \begin{bmatrix}6 & -18 \\2 & -6 \end{bmatrix}\begin{bmatrix}k_1 \\k_2 \end{bmatrix} = \begin{bmatrix}0 \\0 \end{bmatrix}

i can divide by 2\displaystyle 2 to simplify

[61826][k1k2]=[3913][k1k2]=[00]\displaystyle \begin{bmatrix}6 & -18 \\2 & -6 \end{bmatrix}\begin{bmatrix}k_1 \\k_2 \end{bmatrix} = \begin{bmatrix}3 & -9 \\1 & -3 \end{bmatrix}\begin{bmatrix}k_1 \\k_2 \end{bmatrix} = \begin{bmatrix}0 \\0 \end{bmatrix}

i'll use the equation k13k2=0\displaystyle k_1 - 3k_2 = 0 from the matrix

k1=3k2\displaystyle k_1 = 3k_2

i'll chose k2=1\displaystyle k_2 = 1 then k1=3\displaystyle k_1 = 3

K=K1=K2=[k1k2]=[31]\displaystyle \bold{K} = \bold{K_1} = \bold{K_2} = \begin{bmatrix}k_1 \\k_2 \end{bmatrix} = \begin{bmatrix}3 \\1 \end{bmatrix}

that's not good☹️because X=X1=X2=K1eλ1t=K2eλ2t=[31]e3t\displaystyle \bold{X} = \bold{X_1} = \bold{X_2} = \bold{K_1}e^{\lambda_1 t} = \bold{K_2}e^{\lambda_2 t} = \begin{bmatrix}3 \\1 \end{bmatrix}e^{-3t}

that only give me one solution. i need a different solution for X2\displaystyle \bold{X_2} but the problem is X2=X1\displaystyle \bold{X_2} = \bold{X_1}
what shoud i do?😣
 
here is the question

Solve X=[31829]X\displaystyle \bold{X}' = \begin{bmatrix}3 & -18 \\2 & -9 \end{bmatrix}\bold{X}.

my attemb
Z=AλI=[31829]λ[1001]=[31829]+[λ00λ]=[3λ1829λ]\displaystyle \bold{Z} = \bold{A} - \lambda\bold{I} = \begin{bmatrix}3 & -18 \\2 & -9 \end{bmatrix} - \lambda\begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix} = \begin{bmatrix}3 & -18 \\2 & -9 \end{bmatrix} + \begin{bmatrix}-\lambda & 0 \\0 & -\lambda \end{bmatrix} = \begin{bmatrix}3 - \lambda & -18 \\2 & -9 - \lambda \end{bmatrix}

det(Z)=(3λ)(9λ)18(2)=273λ+9λ+λ2+36=λ2+6λ+9=(λ+3)(λ+3)=(λ+3)2=0\displaystyle (\bold{Z}) = (3 - \lambda)(-9 - \lambda) - -18(2) = -27 -3\lambda + 9\lambda + \lambda^2 + 36 = \lambda^2 + 6\lambda + 9 = (\lambda + 3)(\lambda + 3) = (\lambda + 3)^2 = 0

this mean λ1=λ2=3\displaystyle \lambda_1 = \lambda_2 = -3

(Aλ1I)K=[3λ11829λ1][k1k2]=[3318293][k1k2]=[61826][k1k2]=[00]\displaystyle (\bold{A} - \lambda_1\bold{I})\bold{K} = \begin{bmatrix}3 - \lambda_1 & -18 \\2 & -9 - \lambda_1 \end{bmatrix}\begin{bmatrix}k_1 \\k_2 \end{bmatrix} = \begin{bmatrix}3 - -3 & -18 \\2 & -9 - -3 \end{bmatrix}\begin{bmatrix}k_1 \\k_2 \end{bmatrix} = \begin{bmatrix}6 & -18 \\2 & -6 \end{bmatrix}\begin{bmatrix}k_1 \\k_2 \end{bmatrix} = \begin{bmatrix}0 \\0 \end{bmatrix}

i can divide by 2\displaystyle 2 to simplify

[61826][k1k2]=[3913][k1k2]=[00]\displaystyle \begin{bmatrix}6 & -18 \\2 & -6 \end{bmatrix}\begin{bmatrix}k_1 \\k_2 \end{bmatrix} = \begin{bmatrix}3 & -9 \\1 & -3 \end{bmatrix}\begin{bmatrix}k_1 \\k_2 \end{bmatrix} = \begin{bmatrix}0 \\0 \end{bmatrix}

i'll use the equation k13k2=0\displaystyle k_1 - 3k_2 = 0 from the matrix

k1=3k2\displaystyle k_1 = 3k_2

i'll chose k2=1\displaystyle k_2 = 1 then k1=3\displaystyle k_1 = 3

K=K1=K2=[k1k2]=[31]\displaystyle \bold{K} = \bold{K_1} = \bold{K_2} = \begin{bmatrix}k_1 \\k_2 \end{bmatrix} = \begin{bmatrix}3 \\1 \end{bmatrix}

that's not good☹️because X=X1=X2=K1eλ1t=K2eλ2t=[31]e3t\displaystyle \bold{X} = \bold{X_1} = \bold{X_2} = \bold{K_1}e^{\lambda_1 t} = \bold{K_2}e^{\lambda_2 t} = \begin{bmatrix}3 \\1 \end{bmatrix}e^{-3t}

that only give me one solution. i need a different solution for X2\displaystyle \bold{X_2} but the problem is X2=X1\displaystyle \bold{X_2} = \bold{X_1}
what shoud i do?😣
Check your textbook as to what to do when you have repeated roots.

-Dan
 
Top