Hello, O'Brian!
At first, I wonder why these Algebra problems are posted under Calculus.
Then I saw you used the Product Rule, didn't you?
You need to do some Factoring . . .
\(\displaystyle 1)\;(2x^2\,-\,3x\,+\,1)(4)(3x\,+\,2)^3(3)\:+\
3x\,+\,2)^4(4x\,-\, 3)\)
We have: \(\displaystyle \,12(3x\,+\,2)^3(2x^2\,-3x\,+\,1)\:+\
3x\,+\,2)^4(4x\,-\,3)\)
Take out common factors: \(\displaystyle \,(3x\,+\,2)^3\,\cdot\,\left[12(2x^3\,-\,3x\,+\,1)\:+\
3x\,+\,2)(4x\,-\,3)\right]\)
And we have: \(\displaystyle \,(3x\,+\,2)^3\,\cdot\,\left[24x^2\,-\,36x\,+\,12\,+\,12x^2\,-\,x\,-\,6\right]\)
\(\displaystyle \;\;= \;(3x\,+\,2)^3\,(36x^2\,-\,37x\,+\,6)\)
\(\displaystyle 2) \;(x^2\,-\, 4)^{\frac{1}{2}}(3)(2x\,+\,1)^2(2)\:+\
2x\,+\,1)^3\left(\frac{1}{2}\right)(x^2\,-\,4)^{-\frac{1}{2}}(3)\)
We have: \(\displaystyle \,6(x^2\,-\,4)^{\frac{1}{2}}(2x\,+\,1)^2\:+\;\frac{3}{2}(x^2\,-\,4)^{-\frac{1}{2}}(2x\,+\,1)^3\)
Factor: \(\displaystyle \,\frac{3}{2}(x^2\,-\,4)^{-\frac{1}{2}}(2x\,+\,1)^2\,\cdot\,\left[4(x^2\,-\,4)\,+\,(2x\,+\,1)\right]\)
and we have: \(\displaystyle \,\frac{3}{2}(x^2\,-\,4)(2x\,+\,1)^{-\frac{1}{2}}(2x\,+\,1)^2\,\cdot\,\left(4x^2\,-\,16x\,+\,2x\,+\,1\right)\)
\(\displaystyle \;\;\;= \;\frac{3}{2}(x^2\,-\,4)^{-\frac{1}{2}}(2x\,+\,1)\,(4x^2\,-\,14x\,+\,1)\)