Home work Help: Algebraic Expression

O'Brian

New member
Joined
Jul 15, 2006
Messages
5
Hey guys. These kinds of problems are stressing me out! Please help if possible.

Simplify the Expression


1.)

(2x^ - 3x + 1)(4)(3x+2)^3(3) + (3x+2)^4(4x - 3)


2.)

((x^2) - 4)^1/2(3)(2x + 1)^2(2) + (2x + 1)^3(1/2)((x^2) - 4)^-1/2(3)

Thank you!
 
Hello, O'Brian!

At first, I wonder why these Algebra problems are posted under Calculus.
Then I saw you used the Product Rule, didn't you?

You need to do some Factoring . . .

\(\displaystyle 1)\;(2x^2\,-\,3x\,+\,1)(4)(3x\,+\,2)^3(3)\:+\:(3x\,+\,2)^4(4x\,-\, 3)\)
We have: \(\displaystyle \,12(3x\,+\,2)^3(2x^2\,-3x\,+\,1)\:+\:(3x\,+\,2)^4(4x\,-\,3)\)

Take out common factors: \(\displaystyle \,(3x\,+\,2)^3\,\cdot\,\left[12(2x^3\,-\,3x\,+\,1)\:+\:(3x\,+\,2)(4x\,-\,3)\right]\)

And we have: \(\displaystyle \,(3x\,+\,2)^3\,\cdot\,\left[24x^2\,-\,36x\,+\,12\,+\,12x^2\,-\,x\,-\,6\right]\)

\(\displaystyle \;\;= \;(3x\,+\,2)^3\,(36x^2\,-\,37x\,+\,6)\)


\(\displaystyle 2) \;(x^2\,-\, 4)^{\frac{1}{2}}(3)(2x\,+\,1)^2(2)\:+\:(2x\,+\,1)^3\left(\frac{1}{2}\right)(x^2\,-\,4)^{-\frac{1}{2}}(3)\)
We have: \(\displaystyle \,6(x^2\,-\,4)^{\frac{1}{2}}(2x\,+\,1)^2\:+\;\frac{3}{2}(x^2\,-\,4)^{-\frac{1}{2}}(2x\,+\,1)^3\)

Factor: \(\displaystyle \,\frac{3}{2}(x^2\,-\,4)^{-\frac{1}{2}}(2x\,+\,1)^2\,\cdot\,\left[4(x^2\,-\,4)\,+\,(2x\,+\,1)\right]\)

and we have: \(\displaystyle \,\frac{3}{2}(x^2\,-\,4)(2x\,+\,1)^{-\frac{1}{2}}(2x\,+\,1)^2\,\cdot\,\left(4x^2\,-\,16x\,+\,2x\,+\,1\right)\)

\(\displaystyle \;\;\;= \;\frac{3}{2}(x^2\,-\,4)^{-\frac{1}{2}}(2x\,+\,1)\,(4x^2\,-\,14x\,+\,1)\)
 
Top