SoCentral2
New member
- Joined
- Mar 1, 2016
- Messages
- 3
Problem 19. Evaluate: \(\displaystyle \, \dfrac{3^2\, \times\, 5^5\, +\, 3^3\, \times\, 5^3}{3^4\, \times\, 5^4}\)
Dividing each term by the HCF (highest common factor) of the three terms, i.e., 32 × 53, gives:
. . . . .\(\displaystyle \begin{align} \dfrac{3^2\, \times\, 5^5\, +\, 3^3\, \times\, 5^3}{3^4\, \times\, 5^4}\, &=\, \dfrac{\dfrac{3^2\, \times\, 5^5}{3^2\, \times\, 5^3}\, +\, \dfrac{3^3\, \times\, 5^3}{3^2\, \times\, 5^3}}{\dfrac{3^4\, \times\, 5^4}{3^2\, \times\, 5^3}}
\\ \\ &=\, \dfrac{3^{(2-2)}\, \times\, 5^{(5-3)}\, +\, 3^{(3-2)}\, \times\, 5^0}{3^{(4-2)}\, \times\, 5^{(4-3)}}
\\ \\ &=\, \dfrac{3^0\, \times\, 5^2\, +\, 3^1\, \times\, 5^0}{3^2\, \times\, 5^1}
\\ \\ &=\, \dfrac{1\, \times\, 25\, +\, 3\, \times\, 1}{9\, \times\, 5}\, =\, \dfrac{28}{45} \end{align}\)
This is from Bird - "Understanding Engineering Mathematics" Page 58. Is there an easy way to find that the HCF of each of these terms is 32x53? I can't see how.
Dividing each term by the HCF (highest common factor) of the three terms, i.e., 32 × 53, gives:
. . . . .\(\displaystyle \begin{align} \dfrac{3^2\, \times\, 5^5\, +\, 3^3\, \times\, 5^3}{3^4\, \times\, 5^4}\, &=\, \dfrac{\dfrac{3^2\, \times\, 5^5}{3^2\, \times\, 5^3}\, +\, \dfrac{3^3\, \times\, 5^3}{3^2\, \times\, 5^3}}{\dfrac{3^4\, \times\, 5^4}{3^2\, \times\, 5^3}}
\\ \\ &=\, \dfrac{3^{(2-2)}\, \times\, 5^{(5-3)}\, +\, 3^{(3-2)}\, \times\, 5^0}{3^{(4-2)}\, \times\, 5^{(4-3)}}
\\ \\ &=\, \dfrac{3^0\, \times\, 5^2\, +\, 3^1\, \times\, 5^0}{3^2\, \times\, 5^1}
\\ \\ &=\, \dfrac{1\, \times\, 25\, +\, 3\, \times\, 1}{9\, \times\, 5}\, =\, \dfrac{28}{45} \end{align}\)
This is from Bird - "Understanding Engineering Mathematics" Page 58. Is there an easy way to find that the HCF of each of these terms is 32x53? I can't see how.
Attachments
Last edited by a moderator: