The problem is verify that the function u= 1/(x^2 +y^2 +z^2) satisfies the eqn. u xx+u yy +u zz= 0
Here is what I have done, but I must have messed up the dervatives somewhere:
ux= -.5(x^2 + y^2 +z^2)^(-3/2) (2x +y^2 + z^2)
uy= -.5(x^2 + y^2 +z^2)^(-3/2) (2y +x^2 + z^2)
uz= -.5(x^2 + y^2 +z^2)^(-3/2) (2x +y^2 + x^2)
uxx= .75(x^2 +y^2 +z ^2)^(-5/2) (2x+y^2+z^2) * 2x+(x^2+y^2+z^2)^(-3/2) * (2+y^2+z^2)
uyy= .75(x^2 +y^2 +z ^2)^(-5/2) (2y+x^2+z^2) * 2y+(x^2+y^2+z^2)^(-3/2) * (2+x^2+z^2)
uxx= .75(x^2 +y^2 +z ^2)^(-5/2) (2x+y^2+x^2) * 2z+(x^2+y^2+z^2)^(-3/2) * (2+y^2+x^2)
Needless to say, I am not getting zero when adding them together..Any help on where I went wrong would be greatly appreciated!
Here is what I have done, but I must have messed up the dervatives somewhere:
ux= -.5(x^2 + y^2 +z^2)^(-3/2) (2x +y^2 + z^2)
uy= -.5(x^2 + y^2 +z^2)^(-3/2) (2y +x^2 + z^2)
uz= -.5(x^2 + y^2 +z^2)^(-3/2) (2x +y^2 + x^2)
uxx= .75(x^2 +y^2 +z ^2)^(-5/2) (2x+y^2+z^2) * 2x+(x^2+y^2+z^2)^(-3/2) * (2+y^2+z^2)
uyy= .75(x^2 +y^2 +z ^2)^(-5/2) (2y+x^2+z^2) * 2y+(x^2+y^2+z^2)^(-3/2) * (2+x^2+z^2)
uxx= .75(x^2 +y^2 +z ^2)^(-5/2) (2x+y^2+x^2) * 2z+(x^2+y^2+z^2)^(-3/2) * (2+y^2+x^2)
Needless to say, I am not getting zero when adding them together..Any help on where I went wrong would be greatly appreciated!