JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser .
High Order Deriv.: 2nd deriv. of x^3 + y^3 = 6xy
Look for the second derivative of:
. . . x^3 + y^3 = 6xy
This is the work I've done:
. . . x^3 + y^3 = 6xy
. . . 3x^2 + 3y^2(dy/dx) = 6y + 6x(dy/dx)
. . . 3y^2(dy/dx) - 6x(dy/dx) = 6y - 3x^2
. . . dy/dx = (6y - 3x^2) / (3y^2 - 6x)
. . . y' = (2y - x^2) / (y^2 - 2x)
. . . y'' = [(y^2 - 2x)(2(dy/dx) - 2x) - (2y - x^2)(2y(dy/dx) - 2)] / (y^2 - 2x)^2
. . . . . = [(y^2 - 2x)[2(2y - x^2/y^2-2x)-2x] - (2y-x^2)[2y(2y-x^2/y^2-2x)-2]/(y^2-2x)^2
I'm lost on what to do next. I know I have to find a common factor for
everything inside the square brackets, but all the numbers confuse me. Then I'm confused on what to do next. Arggh! This problem is killing me!
I'm sorry if its hard to understand; it's tough transfering it to a computer. Thanks for any help!!
I suggest that the differentiations be done first.
\(\displaystyle \L\begin{array}{rcl}
x^3 + y^3 & = & 6xy \\
3x^2 + 3y^2 y' & = & 6y + 6xy' \\
6x + 6y\left( {y'} \right)^2 + 3y^2 y'y'' & = & 6y' + 6y' + 6xy'' \\
6x + 6y\left( {y'} \right)^2 + 3y^2 y'y'' & = & 12y' + 6xy'' \\
\end{array}.\)
Now, solve for y’ is line two.
Then use that to solve for y’’ in the last line.
im sorry but i dont really understand what you mean..
\(\displaystyle \L\begin{array}{rcl}
3x^2 + 3y^2 y' = 6y + 6xy'\quad & \Rightarrow & \quad y' = \frac{{6y - 3x^2 }}{{3y^2 - 6x}} \\
\Rightarrow \quad 6x + 6y\left( {\frac{{6y - 3x^2 }}{{3y^2 - 6x}}} \right)^2 + 3y^2 \left( {\frac{{6y - 3x^2 }}{{3y^2 - 6x}}} \right)y'' & = & 12\left( {\frac{{6y - 3x^2 }}{{3y^2 - 6x}}} \right) + 6xy'' \\
\end{array}\)
Solve for y''.
OMG i see it now! Thank you SO much, haha wow i dont know how i didnt understand it the first time you told me. Im going to go work it out. Thanks again!!!!
Re: High Order Derivatives
Hello, bandaid-bandet!
\(\displaystyle x^3\,+\,y^3\:=\:6xy\;\;\) Find \(\displaystyle y''\)
Your work looked fine . . . but you factored illegally.
\(\displaystyle \L x^3\,+\,y^3\:=\:6xy\)
\(\displaystyle \L 3x^2\,+\,3y^2y' \:=\:6y\,+\,6xy'\)
\(\displaystyle \L 3y^2y' \,-\, 6xy' \:= \:6y\,-\,3x^2\)
\(\displaystyle \L 3(y^2\,-\,2x)y' \:= \:3(2y\,-\,x^2)\)
\(\displaystyle \L y' \:=\: \frac{2y\,-\,x^2}{y^2\,-\,2x}\)
\(\displaystyle \L y''\:= \:\frac{(y^2\,-\,2x)(2y'\,-\,2x)\, -\,(2y\,-\,x^2)(2yy'\,-\,2)}{(y^2\,-\,2x)^2} \:=\:2\,\frac{(y^2\,-\,2x)(y'\,-\,x)\,-\,(2y\,-\,x^2)(yy'\,-\,1)}{(y^2\,-\,2x)^2}\)
\(\displaystyle \L y''\:=\:2\,\frac{y^2y'\,-\,xy^2\,-\,2xy'\,+\,2x^2\,-\,2y^2y'\,+\,2y\,+\,x^2yy'\,-\,x^2}{(y^2\,-\,2x)^2}\)
\(\displaystyle \L y''\:=\:2\,\frac{(x^2\,+\,2y\,-\,xy^2)\,+\,(x^2y\,-\,2x\,-\,y^2)y'}{(y^2\,-\,2x)^2}\)
\(\displaystyle \L y''\:=\:2\,\frac{(x^2\,+\,2y\,-\,xy^2)\,+\,(x^2y\,-\,2x\,-\,y^2)\cdot\left(\frac{2y\,-\,x^2}{y^2\,-\,2x}\right)}{(y^2\,-\,2x)^2}\)
Multiply top and bottom by \(\displaystyle (y^2\,-\,2x):\)
\(\displaystyle \L y''\:=\:\frac{(y^2\,-2x)(x^2\,+\,2y\,-\,xy^2)\,+\,(2y\,-\,x^2)(x^2y\,-\,2x\,-\,y^2)}{(y^2\,-\,2x)^3}\)
\(\displaystyle \L y''\:=\:2\,\frac{x^2y^2\,+\,2y^3\,-\,xy^4\,-\,2x^3\,-\,4xy\,+\,2x^2y^2\,+\,2x^2y^2\,-\,4xy\,-\,2y^3\,-\,x^4y\,+\,2x^3\,+\,x^2y^2}{(y^2\,-\,2x)^3}\)
\(\displaystyle \L y''\:=\:2\,\frac{4x^2y^2\,-\,2x^4y\,-\,8xy}{(y^2\,-\,2x)^3} \:=\:2\,\frac{2xy(3xy\,-\,x^3\,-\,4)}{(y^2\,-\,2x)^3}\)
Therefore: \(\displaystyle \L\:y'' \:=\:\frac{4xy(3xy\,-\,x^3\,-\,4)}{(y^2\,-\,2x)^3}\)
But some check my work . . . please!