Find the partial fraction decomposition of \(\displaystyle \frac{x^2}{(1-x^4)^2}\)
Attempt to solution:
\(\displaystyle \frac{x^2}{(1-x^4)^2}=\frac{x^2}{(1+x)^2(1-x)^2(1+x^2)^2}\)
\(\displaystyle \frac{x^2}{(1+x)^2(1-x)^2(1+x^2)^2}=\frac{A}{1+x}+\frac{B}{(1+x)^2}+\frac{C}{1-x}+\frac{D}{(1-x^2)}+\frac {Ex+F}{1+x^2}+\frac {Gx+H}{(1+x^2)^2}\)
\(\displaystyle x^2=A(1+x)(1-x)^2(1+x^2)^2+B(1-x)^2(1+x^2)^2+C(1-x)(1+x^2)^2(1+x)^2+D(1+x^2)^2(1+x)^2\)
\(\displaystyle +(Ex+F)(1+x)^2 (1+x^2)(1-x)^2+(Gx+H) (1-x)^2(1+x)^2\)
when x=-1
\(\displaystyle B(1-x)^2(1+x^2)^2=x^2\)
\(\displaystyle B=\frac{1}{(1--1)^2(1+(-1)^2)^2)}=\frac{1}{16}\)
when x=1
\(\displaystyle D=\frac{1}{16}\)
\(\displaystyle x^2=A(x^7-x^6+x^5-x^4-x^3+x^2-x+1)+B(x^6-x^5+3x^4-4x^3+3x^2-2x+1)+\)\(\displaystyle C(-x^7-x^6-x^5-x^4+x^3+x^2+x+1)+ D(x^6+2x^5+3x^4+4x^3+3x^2+2x+1)\)
\(\displaystyle +(Ex+F)(x^8-3x^4+x^2+1)+(Gx+H)(x^4-2x^2+1)\)\(\displaystyle (Gx+H)(x^4-2x^2+1)\)
Equating coefficients
\(\displaystyle x^9\rightarrow 0=E\)
\(\displaystyle x^8\rightarrow 0=F\)
\(\displaystyle x^7\rightarrow 0=A-C\)
\(\displaystyle \therefore A=C\)
\(\displaystyle x^6\rightarrow 0=-A+\frac{1}{16}-C+\frac{1}{16} \rightarrow \frac{-1}{8}=-2A\)
\(\displaystyle \therefore A=C=\frac{1}{16}\)
\(\displaystyle x^5\rightarrow 0=A-B-C+\frac{1}{8}+G \rightarrow 0=\frac{1}{16}-\frac{1}{16}-\frac{1}{16}+\frac{1}{8}+G\)
\(\displaystyle \therefore G=\frac{-1}{8}\)
\(\displaystyle x^4\rightarrow \frac{-3}{16}=-A+3B-C+H \rightarrow \frac{-3}{16}=-2A+3B\)
\(\displaystyle \therefore H=\frac{1}{8}\)
Guys how come the answers at the back of the textbook are saying l am wrong. Did l use the wrong approach to solve this question ? Is there an easier one ?
Attempt to solution:
\(\displaystyle \frac{x^2}{(1-x^4)^2}=\frac{x^2}{(1+x)^2(1-x)^2(1+x^2)^2}\)
\(\displaystyle \frac{x^2}{(1+x)^2(1-x)^2(1+x^2)^2}=\frac{A}{1+x}+\frac{B}{(1+x)^2}+\frac{C}{1-x}+\frac{D}{(1-x^2)}+\frac {Ex+F}{1+x^2}+\frac {Gx+H}{(1+x^2)^2}\)
\(\displaystyle x^2=A(1+x)(1-x)^2(1+x^2)^2+B(1-x)^2(1+x^2)^2+C(1-x)(1+x^2)^2(1+x)^2+D(1+x^2)^2(1+x)^2\)
\(\displaystyle +(Ex+F)(1+x)^2 (1+x^2)(1-x)^2+(Gx+H) (1-x)^2(1+x)^2\)
when x=-1
\(\displaystyle B(1-x)^2(1+x^2)^2=x^2\)
\(\displaystyle B=\frac{1}{(1--1)^2(1+(-1)^2)^2)}=\frac{1}{16}\)
when x=1
\(\displaystyle D=\frac{1}{16}\)
\(\displaystyle x^2=A(x^7-x^6+x^5-x^4-x^3+x^2-x+1)+B(x^6-x^5+3x^4-4x^3+3x^2-2x+1)+\)\(\displaystyle C(-x^7-x^6-x^5-x^4+x^3+x^2+x+1)+ D(x^6+2x^5+3x^4+4x^3+3x^2+2x+1)\)
\(\displaystyle +(Ex+F)(x^8-3x^4+x^2+1)+(Gx+H)(x^4-2x^2+1)\)\(\displaystyle (Gx+H)(x^4-2x^2+1)\)
Equating coefficients
\(\displaystyle x^9\rightarrow 0=E\)
\(\displaystyle x^8\rightarrow 0=F\)
\(\displaystyle x^7\rightarrow 0=A-C\)
\(\displaystyle \therefore A=C\)
\(\displaystyle x^6\rightarrow 0=-A+\frac{1}{16}-C+\frac{1}{16} \rightarrow \frac{-1}{8}=-2A\)
\(\displaystyle \therefore A=C=\frac{1}{16}\)
\(\displaystyle x^5\rightarrow 0=A-B-C+\frac{1}{8}+G \rightarrow 0=\frac{1}{16}-\frac{1}{16}-\frac{1}{16}+\frac{1}{8}+G\)
\(\displaystyle \therefore G=\frac{-1}{8}\)
\(\displaystyle x^4\rightarrow \frac{-3}{16}=-A+3B-C+H \rightarrow \frac{-3}{16}=-2A+3B\)
\(\displaystyle \therefore H=\frac{1}{8}\)
Guys how come the answers at the back of the textbook are saying l am wrong. Did l use the wrong approach to solve this question ? Is there an easier one ?