Find the partial fraction decomposition of (1−x4)2x2
Attempt to solution:
(1−x4)2x2=(1+x)2(1−x)2(1+x2)2x2
(1+x)2(1−x)2(1+x2)2x2=1+xA+(1+x)2B+1−xC+(1−x2)D+1+x2Ex+F+(1+x2)2Gx+H
x2=A(1+x)(1−x)2(1+x2)2+B(1−x)2(1+x2)2+C(1−x)(1+x2)2(1+x)2+D(1+x2)2(1+x)2
+(Ex+F)(1+x)2(1+x2)(1−x)2+(Gx+H)(1−x)2(1+x)2
when x=-1
B(1−x)2(1+x2)2=x2
B=(1−−1)2(1+(−1)2)2)1=161
when x=1
D=161
x2=A(x7−x6+x5−x4−x3+x2−x+1)+B(x6−x5+3x4−4x3+3x2−2x+1)+C(−x7−x6−x5−x4+x3+x2+x+1)+D(x6+2x5+3x4+4x3+3x2+2x+1)
+(Ex+F)(x8−3x4+x2+1)+(Gx+H)(x4−2x2+1)(Gx+H)(x4−2x2+1)
Equating coefficients
x9→0=E
x8→0=F
x7→0=A−C
∴A=C
x6→0=−A+161−C+161→8−1=−2A
∴A=C=161
x5→0=A−B−C+81+G→0=161−161−161+81+G
∴G=8−1
x4→16−3=−A+3B−C+H→16−3=−2A+3B
∴H=81
Guys how come the answers at the back of the textbook are saying l am wrong. Did l use the wrong approach to solve this question ? Is there an easier one ?
Attempt to solution:
(1−x4)2x2=(1+x)2(1−x)2(1+x2)2x2
(1+x)2(1−x)2(1+x2)2x2=1+xA+(1+x)2B+1−xC+(1−x2)D+1+x2Ex+F+(1+x2)2Gx+H
x2=A(1+x)(1−x)2(1+x2)2+B(1−x)2(1+x2)2+C(1−x)(1+x2)2(1+x)2+D(1+x2)2(1+x)2
+(Ex+F)(1+x)2(1+x2)(1−x)2+(Gx+H)(1−x)2(1+x)2
when x=-1
B(1−x)2(1+x2)2=x2
B=(1−−1)2(1+(−1)2)2)1=161
when x=1
D=161
x2=A(x7−x6+x5−x4−x3+x2−x+1)+B(x6−x5+3x4−4x3+3x2−2x+1)+C(−x7−x6−x5−x4+x3+x2+x+1)+D(x6+2x5+3x4+4x3+3x2+2x+1)
+(Ex+F)(x8−3x4+x2+1)+(Gx+H)(x4−2x2+1)(Gx+H)(x4−2x2+1)
Equating coefficients
x9→0=E
x8→0=F
x7→0=A−C
∴A=C
x6→0=−A+161−C+161→8−1=−2A
∴A=C=161
x5→0=A−B−C+81+G→0=161−161−161+81+G
∴G=8−1
x4→16−3=−A+3B−C+H→16−3=−2A+3B
∴H=81
Guys how come the answers at the back of the textbook are saying l am wrong. Did l use the wrong approach to solve this question ? Is there an easier one ?