hey just need to know if im on the right track with this: 7/(4x+2) + 3/(2 - 3x) = 0

so im to solve, and state assumptions on x.View attachment 37039
i am i on the correct track?

You can check the answer to any "solving" exercise by plugging your value back into the original problem. If your case, you want to see if x=209x = \frac{20}{9} makes the original equation true. So check, plugging into the left-hand side:

74(209)+2+323(209)\qquad \dfrac{7}{4\left(\frac{20}{9}\right) + 2} + \dfrac{3}{2 - 3\left(\frac{20}{9}\right)}

7(989)+3(429)\qquad \dfrac{7}{\left(\frac{98}{9}\right)} + \dfrac{3}{\left(\frac{-42}{9}\right)}

(71)(998)+(31)(942)\qquad \left(\frac{7}{1}\right)\left(\frac{9}{98}\right) + \left(\frac{3}{1}\right)\left(-\frac{9}{42}\right)

914914\qquad \frac{9}{14} - \frac{9}{14}

0\qquad 0

So the solution checks.
 
so im to solve, and state assumptions on x.
i am i on the correct track?

suki, you are certainly on the right track, with a correct final solution,
and you were shown how your solution checks. Let me write a slight
redo with certain equals signs that do not belong. Also, let me
address the "assumptions on x" you mentioned.

74x+2 + 323x = 0\displaystyle \dfrac{7}{4x + 2} \ + \ \dfrac{3}{2 - 3x} \ = \ 0

7(23x) + 3(4x+2) = 0\displaystyle 7(2 - 3x) \ + \ 3(4x + 2) \ = \ 0

1421x+12x+6 = 0\displaystyle 14 - 21x + 12x + 6 \ = \ 0

9x+20 = 0\displaystyle -9x + 20 \ = \ 0

9x = 20\displaystyle 9x \ = \ 20

x = 209\displaystyle x \ = \ \dfrac{20}{9}

-------------------------------------------------------------------------------------------------------------

For the fractions in the first line, neither denominator may equal zero.
We can find out restrictions on x by stating each denominator is not
equal to zero and solve that respective nonequation:

4x+20\displaystyle 4x + 2 \ne 0

4x2\displaystyle 4x \ne -2

x12\displaystyle x \ne \dfrac{-1}{2}

Also,

23x0\displaystyle 2 - 3x \ne 0

3x2\displaystyle -3x \ne -2

x23\displaystyle x \ne \dfrac{2}{3}

---------------------------------------------------------------------------------------

Notice how the solution of  x = 209 \displaystyle \ x \ = \ \dfrac{20}{9} \ is different from either of
these two restricted values.
 
Top