help...

Debasish

New member
Joined
Jan 19, 2012
Messages
13
If x=a(b-c),y=b(c-a)and z=c(a-b),then (x/a)^3 +(y/b)^3 +(z/c)^3 =?



N.B:^ = cube
 
Hello, Debasish!

\(\displaystyle \text{If }\,\begin{Bmatrix}x\:=\:a(b-c) \\ y\:=\:b(c-a) \\ z\:=\:c(a-b)\end{Bmatrix}\;\text{ find: }\:\left(\dfrac{x}{a}\right)^3 +\left(\dfrac{y}{b}\right)^3 +\left(\dfrac{z}{c}\right)^3\)

We have: .\(\displaystyle \dfrac{x}{a} \:=\:b-c, \quad \dfrac{y}{b} \:=\:c-a, \quad \dfrac{z}{c} \:=\:a-b \)

Hence: .\(\displaystyle \left(\dfrac{x}{a}\right)^3 + \left(\dfrac{y}{b}\right)^3 + \left(\dfrac{z}{c}\right)^3 \;=\; (b-c)^3 + (c-a)^3 + (a-b)^3\)

. . . . . \(\displaystyle =\;b^3 - 3b^2c + 3bc^2 - c^3 + c^3 - 3c^2a + 3ca^2 - a^3 + a^3 - 3a^2b + 3ab^2 - b^3\)

. . . . . \(\displaystyle =\;-3b^2c + 3bc^2 - 3ac^2 + 3a^2c - 3a^2b + 3ab^2\)

. . . . . \(\displaystyle =\;-3\bigg[a^2b - a^2c - ab^2 + ac^2 + b^2c - bc^2\bigg]\)

. . . . . \(\displaystyle =\;-3\bigg[a^2(b-c) - a(b^2-c^2) + bc(b-c)\bigg]\)

. . . . . \(\displaystyle =\;-3\bigg[a^2(b-c) - a(b-c)(b+c) + bc(b-c)\bigg]\)

. . . . . \(\displaystyle =\;-3(b-c)\bigg[a^2 - a(b+c) + bc\bigg]\)

. . . . . \(\displaystyle =\;-3(b-c)\bigg[a^2 - ab - ac + bc\bigg]\)

. . . . . \(\displaystyle =\;-3(b-c)\bigg[a(a-b) - c(a-b)\bigg]\)

. . . . . \(\displaystyle =\;-3(b-c)(a-b)\big[a - c\big]\)

. . . . . \(\displaystyle =\;\boxed{3(a-b)(b-c)(c-a)}\)

. . . . . \(\displaystyle =\;3\left(\dfrac{z}{c}\right)\left(\dfrac{x}{a}\right)\left(\dfrac{y}{b}\right)\)

. . . . . \(\displaystyle =\;\boxed{3\left(\dfrac{x}{a}\right)\left(\dfrac{y}{b}\right)\left(\dfrac{z}{c}\right)} \)
 
Top