help...

Debasish

New member
Joined
Jan 19, 2012
Messages
13
If x=a(b-c),y=b(c-a)and z=c(a-b),then (x/a)^3 +(y/b)^3 +(z/c)^3 =?



N.B:^ = cube
 
Hello, Debasish!

If {x=a(bc)y=b(ca)z=c(ab)}   find: (xa)3+(yb)3+(zc)3\displaystyle \text{If }\,\begin{Bmatrix}x\:=\:a(b-c) \\ y\:=\:b(c-a) \\ z\:=\:c(a-b)\end{Bmatrix}\;\text{ find: }\:\left(\dfrac{x}{a}\right)^3 +\left(\dfrac{y}{b}\right)^3 +\left(\dfrac{z}{c}\right)^3

We have: .xa=bc,yb=ca,zc=ab\displaystyle \dfrac{x}{a} \:=\:b-c, \quad \dfrac{y}{b} \:=\:c-a, \quad \dfrac{z}{c} \:=\:a-b

Hence: .(xa)3+(yb)3+(zc)3  =  (bc)3+(ca)3+(ab)3\displaystyle \left(\dfrac{x}{a}\right)^3 + \left(\dfrac{y}{b}\right)^3 + \left(\dfrac{z}{c}\right)^3 \;=\; (b-c)^3 + (c-a)^3 + (a-b)^3

. . . . . =  b33b2c+3bc2c3+c33c2a+3ca2a3+a33a2b+3ab2b3\displaystyle =\;b^3 - 3b^2c + 3bc^2 - c^3 + c^3 - 3c^2a + 3ca^2 - a^3 + a^3 - 3a^2b + 3ab^2 - b^3

. . . . . =  3b2c+3bc23ac2+3a2c3a2b+3ab2\displaystyle =\;-3b^2c + 3bc^2 - 3ac^2 + 3a^2c - 3a^2b + 3ab^2

. . . . . =  3[a2ba2cab2+ac2+b2cbc2]\displaystyle =\;-3\bigg[a^2b - a^2c - ab^2 + ac^2 + b^2c - bc^2\bigg]

. . . . . =  3[a2(bc)a(b2c2)+bc(bc)]\displaystyle =\;-3\bigg[a^2(b-c) - a(b^2-c^2) + bc(b-c)\bigg]

. . . . . =  3[a2(bc)a(bc)(b+c)+bc(bc)]\displaystyle =\;-3\bigg[a^2(b-c) - a(b-c)(b+c) + bc(b-c)\bigg]

. . . . . =  3(bc)[a2a(b+c)+bc]\displaystyle =\;-3(b-c)\bigg[a^2 - a(b+c) + bc\bigg]

. . . . . =  3(bc)[a2abac+bc]\displaystyle =\;-3(b-c)\bigg[a^2 - ab - ac + bc\bigg]

. . . . . =  3(bc)[a(ab)c(ab)]\displaystyle =\;-3(b-c)\bigg[a(a-b) - c(a-b)\bigg]

. . . . . =  3(bc)(ab)[ac]\displaystyle =\;-3(b-c)(a-b)\big[a - c\big]

. . . . . =  3(ab)(bc)(ca)\displaystyle =\;\boxed{3(a-b)(b-c)(c-a)}

. . . . . =  3(zc)(xa)(yb)\displaystyle =\;3\left(\dfrac{z}{c}\right)\left(\dfrac{x}{a}\right)\left(\dfrac{y}{b}\right)

. . . . . =  3(xa)(yb)(zc)\displaystyle =\;\boxed{3\left(\dfrac{x}{a}\right)\left(\dfrac{y}{b}\right)\left(\dfrac{z}{c}\right)}
 
Top