help

This one is actually easier than it looks.

\(\displaystyle \int\frac{cot(x)}{ln(sin(x))}dx\)

Let \(\displaystyle u=ln(sin(x)), \;\ du=cot(x)dx\)

Now, make the subs and get:

\(\displaystyle \int\frac{1}{u}du\)

Integrate and resub. That's it.
 
\(\displaystyle \int\frac{cot(x)}{ln|sin(x)|}dx \ = \ \int\frac{cos(x)dx}{sin(x)[ln|sin(x)|]}\)

\(\displaystyle Let \ u \ = \ sin(x), \ then \ du \ = \ cos(x)dx\)

\(\displaystyle Ergo, \ \int\frac{du}{u[ln|u|]}\)

\(\displaystyle Now, \ let \ k \ = \ ln|u|, \ then \ dk \ = \ \frac{1}{u}du\)

\(\displaystyle Hence, \ we \ now \ have \ \int\frac{dk}{k} \ = \ \int k^{-1}dk \ = \ln|k|+C.\)

\(\displaystyle Resubstituting, \ we \ get \ ln[ln|u|]+C \ = \ ln[ln|sin(x)|] \ +C \ QED.\)
 
Top