help

This one is actually easier than it looks.

cot(x)ln(sin(x))dx\displaystyle \int\frac{cot(x)}{ln(sin(x))}dx

Let u=ln(sin(x)),   du=cot(x)dx\displaystyle u=ln(sin(x)), \;\ du=cot(x)dx

Now, make the subs and get:

1udu\displaystyle \int\frac{1}{u}du

Integrate and resub. That's it.
 
cot(x)lnsin(x)dx = cos(x)dxsin(x)[lnsin(x)]\displaystyle \int\frac{cot(x)}{ln|sin(x)|}dx \ = \ \int\frac{cos(x)dx}{sin(x)[ln|sin(x)|]}

Let u = sin(x), then du = cos(x)dx\displaystyle Let \ u \ = \ sin(x), \ then \ du \ = \ cos(x)dx

Ergo, duu[lnu]\displaystyle Ergo, \ \int\frac{du}{u[ln|u|]}

Now, let k = lnu, then dk = 1udu\displaystyle Now, \ let \ k \ = \ ln|u|, \ then \ dk \ = \ \frac{1}{u}du

Hence, we now have dkk = k1dk =lnk+C.\displaystyle Hence, \ we \ now \ have \ \int\frac{dk}{k} \ = \ \int k^{-1}dk \ = \ln|k|+C.

Resubstituting, we get ln[lnu]+C = ln[lnsin(x)] +C QED.\displaystyle Resubstituting, \ we \ get \ ln[ln|u|]+C \ = \ ln[ln|sin(x)|] \ +C \ QED.
 
Top