Hello, jeca86!
Convergent or divergent?
\(\displaystyle \L\sum^{\infty}_{n=1}\left[4 \,+\,\frac{3^n}{2^n}\right]\;\) . . . or is it: \(\displaystyle \L\,\sum^{\infty}_{n=1}\frac{4 + 3^n}{2^n}\)
Either way, it diverges . . .
(a) In the first interpretation, we have: \(\displaystyle \L\,\sum^{\infty}_{n=1}\left[4\,+\,\left(\frac{3}{2}\right)^n\right] \;=\;\sum^{\infty}_{n=1}4 \,+\,\sum^{\infty}_{n=1}\left(\frac{3}{2}\right)^n\)
The first sum is:
4+4+4+4+⋯ which obviously diverges.
(b) In the second version, we have: \(\displaystyle \L\,\sum^{\infty}_{n=1}\left[\frac{4}{2^n}\,+\,\left(\frac{3^n}{2^n}\right)\right] \;=\;\sum^{\infty}_{n=1}\frac{4}{2^n}\,+\,\sum^{\infty}_{n=1}\left(\frac{3}{2}\right)^n\)
The first sum is a geometric series with first term
a=24 and common ratio
r=21
Since
r<1, this sum converges.
But the second sum has first term
a=23 and common ratio
r=23
Since
r>1, this sum diverges.
Therefore, the entire sum diverges.
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
If it was the second version, a comparison test would have sufficed.
Since \(\displaystyle \L\,\frac{4\,+\,3^n}{2^n}\:>\:\frac{3^n}{2^n}\;\) and \(\displaystyle \L\sum^{\infty}_{n=1}\left(\frac{3}{2}\right)^2\) diverges,
then \(\displaystyle \L\,\sum^{\infty}_{n=1}\frac{4\,+\,3^n}{2^n}\,\) also diverges.