Use the substitution x=sectheta, where 0<theta<pi/2 or pi<theta<3pi/2, to evaluate
the integral of the (square root(x^2 -1))/x^4 *dx
i have:
x=sectheta
dx=sectheta*tantheta*dtheta
integral of (square root((sec^2theta)-1)/sec^4theta)*(sectheta*tantheta*dtheta)
=(tantheta/sec^3theta)*(tantheta*dtheta)
=(tan^2theta/sec^3theta)*dtheta
=(sec^2theta-1)/(sectheta(1+tan^2theta))*dtheta
this is where i get lost.[/img]
the integral of the (square root(x^2 -1))/x^4 *dx
i have:
x=sectheta
dx=sectheta*tantheta*dtheta
integral of (square root((sec^2theta)-1)/sec^4theta)*(sectheta*tantheta*dtheta)
=(tantheta/sec^3theta)*(tantheta*dtheta)
=(tan^2theta/sec^3theta)*dtheta
=(sec^2theta-1)/(sectheta(1+tan^2theta))*dtheta
this is where i get lost.[/img]