Yes, I agree that the maximum value of the sum of the two trig functions is 5, and this maximum occurs for:
[MATH]15t+\arctan\left(\frac{3}{4}\right)=\frac{\pi}{2}[/MATH]
[MATH]t=\frac{1}{15}\left(\frac{\pi}{2}-\arctan\left(\frac{3}{4}\right)\right)\approx0.0618196812[/MATH]
However, if we are to use the suggested form, we need to write:
[MATH]5\sin\left(15t+\arctan\left(\frac{3}{4}\right)\right)=5\cos\left(15t-\left(\frac{\pi}{2}-\arctan\left(\frac{3}{4}\right)\right)\right)[/MATH]
And of course we get the same value for \(t\) at the maximum.
Use this to find the minimum temperature:
[MATH]5\le10+5\sin(\theta)\le15[/MATH]
And to find when the minimum occurs, use either form where:
[MATH]\cos(\pi)=\sin\left(\frac{3\pi}{2}\right)=-1[/MATH]