OrangeOne said:
? sinxcosx dx
What is the anti-derivative of sinxcosx..
Some choices:
-----------------
\(\displaystyle A) \ \ 2sinxcosx \ = \ sin(2x), \ so\ sinxcosx\ = \ \frac{1}{2} sin(2x) \longrightarrow\)
\(\displaystyle \int{\frac{1}{2}sin(2x) \ dx \ . \ . \ . \ . \ And \ then \ try \ that.\)
====================================================================
\(\displaystyle B) \ \ The \ derivative \ of \ sinx \ is \ cosx.\)
\(\displaystyle \ Let \ u \ = \ sinx.\)
\(\displaystyle \ Then \ du \ = \ cosx \ dx.\)
\(\displaystyle Then \ \int{u \ du} \ = \ \int{sinx(cosx \ dx) \ = \ what \ ?\)
===================================================================
\(\displaystyle C) \ \ The \ derivative \ of \ cosx \ = \ -sinx.\)
\(\displaystyle Let \ u \ = \ cosx.\)
\(\displaystyle Then \ du \ = \ -sinx \ dx.\)
\(\displaystyle Then \ \int{u \ du} = \ \int{cosx(-sinx \ dx)\)
\(\displaystyle But \ your \ original \ function \ does \ not \ have \ a \ negative \ sign, \ so\)
\(\displaystyle (-1) \int{cosx[(-1)(-sinx \ dx)] \ = \\)
\(\displaystyle -\int{cosx(sinx \ dx)} = \ what \ ?\)