Help with this small integral step..

OrangeOne

New member
Joined
Sep 8, 2010
Messages
30
Im solving an integral problem and a part of it means I need to solve this:

? sinxcosx dx

What is the anti-derivative of sinxcosx..I just don't get it?

Please help!
 
OrangeOne said:
Im solving an integral problem and a part of it means I need to solve this:

? sinxcosx dx

What is the anti-derivative of sinxcosx..I just don't get it?

Please help!

Do you know wht the anti-derivative of sin(x)?

Also remember:

sin(x)cos(x) = 12sin(2x)\displaystyle sin(x)\cdot cos(x) \ = \ \frac{1}{2}\cdot sin(2x)
 
OrangeOne said:
? sinxcosx dx

What is the anti-derivative of sinxcosx..

Some choices:
-----------------

A)  2sinxcosx = sin(2x), so sinxcosx = 12sin(2x)\displaystyle A) \ \ 2sinxcosx \ = \ sin(2x), \ so\ sinxcosx\ = \ \frac{1}{2} sin(2x) \longrightarrow

\(\displaystyle \int{\frac{1}{2}sin(2x) \ dx \ . \ . \ . \ . \ And \ then \ try \ that.\)

====================================================================


B)  The derivative of sinx is cosx.\displaystyle B) \ \ The \ derivative \ of \ sinx \ is \ cosx.

 Let u = sinx.\displaystyle \ Let \ u \ = \ sinx.

 Then du = cosx dx.\displaystyle \ Then \ du \ = \ cosx \ dx.

\(\displaystyle Then \ \int{u \ du} \ = \ \int{sinx(cosx \ dx) \ = \ what \ ?\)

===================================================================


C)  The derivative of cosx = sinx.\displaystyle C) \ \ The \ derivative \ of \ cosx \ = \ -sinx.

Let u = cosx.\displaystyle Let \ u \ = \ cosx.

Then du = sinx dx.\displaystyle Then \ du \ = \ -sinx \ dx.

\(\displaystyle Then \ \int{u \ du} = \ \int{cosx(-sinx \ dx)\)

But your original function does not have a negative sign, so\displaystyle But \ your \ original \ function \ does \ not \ have \ a \ negative \ sign, \ so

\(\displaystyle (-1) \int{cosx[(-1)(-sinx \ dx)] \ = \\)

cosx(sinx dx)= what ?\displaystyle -\int{cosx(sinx \ dx)} = \ what \ ?
 
Top