Help with this problem...

dwpelt

New member
Joined
Oct 17, 2009
Messages
1
I attached the problem, and im stumped, any help would be appreciated.......
 

Attachments

  • question 10.jpg
    question 10.jpg
    18.1 KB · Views: 29
Hello, dwpelt!

I'll do the first one . . .


For the function find the average rate of change of \(\displaystyle f\) for 1 to \(\displaystyle x.\)

. . \(\displaystyle \text{Formula: }\:\frac{f(x) - f(1)}{x-1}\quad x \neq 1\)


\(\displaystyle (1)\;f(x) \:=\:\frac{3}{x+2}\)

Do you understand the formula?

\(\displaystyle \text{It says: }\:\begin{array}{ccccc}\text{1. Take }f(x) \\\text{2. Subtract }f(1) \\ \text{3. Divide by }x-1 \end{array}\)


\(\displaystyle \text{1. The first step is easy; we have: }\;f(x) \:=\:\frac{3}{x+2}\)


\(\displaystyle \text{2. Subtract }f(1)\)

. . \(\displaystyle \text{First, find }f(1): }\;f(1) \:=\:\frac{3}{1+2} \:=\:\frac{3}{3} \:=\:1\)

. . \(\displaystyle \text{So we have: }\;f(x) - f(1) \;=\;\frac{3}{x+2} - 1\)

. . \(\displaystyle \text{Simplify: }\;\frac{3}{x+2} - \frac{x+2}{x+2} \;=\;\frac{3-(x+2)}{x+2} \;=\;\frac{1-x}{x+2}\)


\(\displaystyle \text{3. Divide by }x-1\)

. . \(\displaystyle \frac{1}{x-1}\cdot\frac{1-x}{x+2} \;=\;\frac{-(x-1)}{(x-1)(x+2)} \;=\;\boxed{\frac{-1}{x+2}}\)

 
Top