Help with this problem...

dwpelt

New member
Joined
Oct 17, 2009
Messages
1
I attached the problem, and im stumped, any help would be appreciated.......
 

Attachments

  • question 10.jpg
    question 10.jpg
    18.1 KB · Views: 29
Hello, dwpelt!

I'll do the first one . . .


For the function find the average rate of change of f\displaystyle f for 1 to x.\displaystyle x.

. . Formula: f(x)f(1)x1x1\displaystyle \text{Formula: }\:\frac{f(x) - f(1)}{x-1}\quad x \neq 1


(1)  f(x)=3x+2\displaystyle (1)\;f(x) \:=\:\frac{3}{x+2}

Do you understand the formula?

It says: 1. Take f(x)2. Subtract f(1)3. Divide by x1\displaystyle \text{It says: }\:\begin{array}{ccccc}\text{1. Take }f(x) \\\text{2. Subtract }f(1) \\ \text{3. Divide by }x-1 \end{array}


1. The first step is easy; we have:   f(x)=3x+2\displaystyle \text{1. The first step is easy; we have: }\;f(x) \:=\:\frac{3}{x+2}


2. Subtract f(1)\displaystyle \text{2. Subtract }f(1)

. . \(\displaystyle \text{First, find }f(1): }\;f(1) \:=\:\frac{3}{1+2} \:=\:\frac{3}{3} \:=\:1\)

. . So we have:   f(x)f(1)  =  3x+21\displaystyle \text{So we have: }\;f(x) - f(1) \;=\;\frac{3}{x+2} - 1

. . Simplify:   3x+2x+2x+2  =  3(x+2)x+2  =  1xx+2\displaystyle \text{Simplify: }\;\frac{3}{x+2} - \frac{x+2}{x+2} \;=\;\frac{3-(x+2)}{x+2} \;=\;\frac{1-x}{x+2}


3. Divide by x1\displaystyle \text{3. Divide by }x-1

. . 1x11xx+2  =  (x1)(x1)(x+2)  =  1x+2\displaystyle \frac{1}{x-1}\cdot\frac{1-x}{x+2} \;=\;\frac{-(x-1)}{(x-1)(x+2)} \;=\;\boxed{\frac{-1}{x+2}}

 
Top