R rawr New member Joined Jun 12, 2010 Messages 1 Jun 12, 2010 #1 I'm working with logs, and index's etc. I have been given the question solve for x: 5^(5-3x)=2^(x+2) help, asap is appreciated. thankyou.
I'm working with logs, and index's etc. I have been given the question solve for x: 5^(5-3x)=2^(x+2) help, asap is appreciated. thankyou.
D Denis Senior Member Joined Feb 17, 2004 Messages 1,700 Jun 12, 2010 #2 Can't be solved directly, only numerically.
G galactus Super Moderator Staff member Joined Sep 28, 2005 Messages 7,203 Jun 12, 2010 #3 I think we can solve this algebraically. \(\displaystyle 5^{5-3x}=2^{x+2}\) \(\displaystyle (5-3x)ln(5)=(x+2)ln(2)\) \(\displaystyle \frac{5-3x}{x+2}=\frac{ln(2)}{ln(5)}\) \(\displaystyle \frac{11}{x+2}-3=\frac{ln(2)}{ln(5)}\) Add 3, then reciprocal of each side: \(\displaystyle \frac{x+2}{11}=\frac{ln(5)}{ln(250)}\) Now, finish up?. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Another way: \(\displaystyle \frac{5^{5}}{5^{3x}}=2^{2}\cdot 2^{x}\) \(\displaystyle \frac{3125}{5^{3x}}=4\cdot 2^{x}\) \(\displaystyle \frac{3125}{4}=(5^{3}\cdot 2)^{x}\) Now, finish?.
I think we can solve this algebraically. \(\displaystyle 5^{5-3x}=2^{x+2}\) \(\displaystyle (5-3x)ln(5)=(x+2)ln(2)\) \(\displaystyle \frac{5-3x}{x+2}=\frac{ln(2)}{ln(5)}\) \(\displaystyle \frac{11}{x+2}-3=\frac{ln(2)}{ln(5)}\) Add 3, then reciprocal of each side: \(\displaystyle \frac{x+2}{11}=\frac{ln(5)}{ln(250)}\) Now, finish up?. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Another way: \(\displaystyle \frac{5^{5}}{5^{3x}}=2^{2}\cdot 2^{x}\) \(\displaystyle \frac{3125}{5^{3x}}=4\cdot 2^{x}\) \(\displaystyle \frac{3125}{4}=(5^{3}\cdot 2)^{x}\) Now, finish?.
D Denis Senior Member Joined Feb 17, 2004 Messages 1,700 Jun 12, 2010 #4 Nice "catch" Galactus. I musta been dreaming of Lady Gaga :?
S soroban Elite Member Joined Jan 28, 2005 Messages 5,584 Jun 12, 2010 #5 Hello, rawr! Another approach . . . \(\displaystyle \text{Solve for }x: \;\;5^{5-3x}\:=\:2^{x+2}\) Click to expand... \(\displaystyle \text{Take logs: }\;\ln\left(5^{5-3x}\right) \:=\:\ln\left(2^{x+2}\right)\) . . . . . . .\(\displaystyle (5-3x)\!\cdot\!\ln5 \:=\x+2)\!\cdot\!\ln2\) . . . . .\(\displaystyle 5\!\cdot\!\ln5 - 3x\!\cdot\!\ln5 \:=\:x\!\cdot\!\ln2 + 2\!\cdot\!\ln2\) . . . . .\(\displaystyle x\!\cdot\!\ln2 + 3x\!\cdot\!\ln5 \:=\:5\!\cdot\!\ln5 - 2\!\cdot\!\ln2\) . . . . .\(\displaystyle x\!\cdot\!(\ln 2 + 3\ln 5) \:=\:5\!\cdot\!\ln5 - 2\!\cdot\!\ln 2\) . . . . . . . . . . . . . .\(\displaystyle x \:=\:\frac{5\!\cdot\!\ln5 - 2\!\cdot\!\ln2}{\ln 2 + 3\!\cdot\!\ln5}\) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ This can be simplified beyond all recognition . . . . . \(\displaystyle x \;=\;\frac{\ln(5^5) - \ln(2^2)}{\ln(5^3) + \ln2} \;=\; \frac{\ln3125 - \ln4}{\ln125 + \ln 2}\) . . . . \(\displaystyle = \;\frac{\ln\left(\frac{3125}{4}\right)}{\ln(125\cdot2)} \;=\;\frac{\ln781.25}{\ln250}\) . . . . \(\displaystyle = \;1.206364638\hdots\)
Hello, rawr! Another approach . . . \(\displaystyle \text{Solve for }x: \;\;5^{5-3x}\:=\:2^{x+2}\) Click to expand... \(\displaystyle \text{Take logs: }\;\ln\left(5^{5-3x}\right) \:=\:\ln\left(2^{x+2}\right)\) . . . . . . .\(\displaystyle (5-3x)\!\cdot\!\ln5 \:=\x+2)\!\cdot\!\ln2\) . . . . .\(\displaystyle 5\!\cdot\!\ln5 - 3x\!\cdot\!\ln5 \:=\:x\!\cdot\!\ln2 + 2\!\cdot\!\ln2\) . . . . .\(\displaystyle x\!\cdot\!\ln2 + 3x\!\cdot\!\ln5 \:=\:5\!\cdot\!\ln5 - 2\!\cdot\!\ln2\) . . . . .\(\displaystyle x\!\cdot\!(\ln 2 + 3\ln 5) \:=\:5\!\cdot\!\ln5 - 2\!\cdot\!\ln 2\) . . . . . . . . . . . . . .\(\displaystyle x \:=\:\frac{5\!\cdot\!\ln5 - 2\!\cdot\!\ln2}{\ln 2 + 3\!\cdot\!\ln5}\) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ This can be simplified beyond all recognition . . . . . \(\displaystyle x \;=\;\frac{\ln(5^5) - \ln(2^2)}{\ln(5^3) + \ln2} \;=\; \frac{\ln3125 - \ln4}{\ln125 + \ln 2}\) . . . . \(\displaystyle = \;\frac{\ln\left(\frac{3125}{4}\right)}{\ln(125\cdot2)} \;=\;\frac{\ln781.25}{\ln250}\) . . . . \(\displaystyle = \;1.206364638\hdots\)
D Denis Senior Member Joined Feb 17, 2004 Messages 1,700 Jun 12, 2010 #6 Well, to make up for my faux pas (and before Subhotosh has me stand in the corner!) : m^(ax + u) = n^(bx + v) x = (u - kv) / (kb - a) where k = log(n) / log(m) From the given problem: m=5, n=2, a=-3, b=1, u = 5, v = 2, x=?
Well, to make up for my faux pas (and before Subhotosh has me stand in the corner!) : m^(ax + u) = n^(bx + v) x = (u - kv) / (kb - a) where k = log(n) / log(m) From the given problem: m=5, n=2, a=-3, b=1, u = 5, v = 2, x=?
D Deleted member 4993 Guest Jun 15, 2010 #7 Denis said: Nice "catch" Galactus. I musta been dreaming of Lady Gaga :? Click to expand... Lady Gaga in your dreams - you are a brave man - her face scares the nightmare out of me...... :mrgreen: :mrgreen:
Denis said: Nice "catch" Galactus. I musta been dreaming of Lady Gaga :? Click to expand... Lady Gaga in your dreams - you are a brave man - her face scares the nightmare out of me...... :mrgreen: :mrgreen: