Help with This equation. Logs

rawr

New member
Joined
Jun 12, 2010
Messages
1
I'm working with logs, and index's etc.
I have been given the question
solve for x:
5^(5-3x)=2^(x+2)

help, asap is appreciated.
thankyou.
 
I think we can solve this algebraically.

\(\displaystyle 5^{5-3x}=2^{x+2}\)

\(\displaystyle (5-3x)ln(5)=(x+2)ln(2)\)

\(\displaystyle \frac{5-3x}{x+2}=\frac{ln(2)}{ln(5)}\)

\(\displaystyle \frac{11}{x+2}-3=\frac{ln(2)}{ln(5)}\)

Add 3, then reciprocal of each side:

\(\displaystyle \frac{x+2}{11}=\frac{ln(5)}{ln(250)}\)

Now, finish up?.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Another way:

\(\displaystyle \frac{5^{5}}{5^{3x}}=2^{2}\cdot 2^{x}\)

\(\displaystyle \frac{3125}{5^{3x}}=4\cdot 2^{x}\)

\(\displaystyle \frac{3125}{4}=(5^{3}\cdot 2)^{x}\)

Now, finish?.
 
Nice "catch" Galactus. I musta been dreaming of Lady Gaga :?
 
Hello, rawr!

Another approach . . .


\(\displaystyle \text{Solve for }x: \;\;5^{5-3x}\:=\:2^{x+2}\)


\(\displaystyle \text{Take logs: }\;\ln\left(5^{5-3x}\right) \:=\:\ln\left(2^{x+2}\right)\)

. . . . . . .\(\displaystyle (5-3x)\!\cdot\!\ln5 \:=\:(x+2)\!\cdot\!\ln2\)

. . . . .\(\displaystyle 5\!\cdot\!\ln5 - 3x\!\cdot\!\ln5 \:=\:x\!\cdot\!\ln2 + 2\!\cdot\!\ln2\)

. . . . .\(\displaystyle x\!\cdot\!\ln2 + 3x\!\cdot\!\ln5 \:=\:5\!\cdot\!\ln5 - 2\!\cdot\!\ln2\)

. . . . .\(\displaystyle x\!\cdot\!(\ln 2 + 3\ln 5) \:=\:5\!\cdot\!\ln5 - 2\!\cdot\!\ln 2\)

. . . . . . . . . . . . . .\(\displaystyle x \:=\:\frac{5\!\cdot\!\ln5 - 2\!\cdot\!\ln2}{\ln 2 + 3\!\cdot\!\ln5}\)


~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~


This can be simplified beyond all recognition . . .


. . \(\displaystyle x \;=\;\frac{\ln(5^5) - \ln(2^2)}{\ln(5^3) + \ln2} \;=\; \frac{\ln3125 - \ln4}{\ln125 + \ln 2}\)

. . . . \(\displaystyle = \;\frac{\ln\left(\frac{3125}{4}\right)}{\ln(125\cdot2)} \;=\;\frac{\ln781.25}{\ln250}\)

. . . . \(\displaystyle = \;1.206364638\hdots\)

 
Well, to make up for my faux pas (and before Subhotosh has me stand in the corner!) :

m^(ax + u) = n^(bx + v)

x = (u - kv) / (kb - a) where k = log(n) / log(m)

From the given problem: m=5, n=2, a=-3, b=1, u = 5, v = 2, x=?
 
Denis said:
Nice "catch" Galactus. I musta been dreaming of Lady Gaga :?

Lady Gaga in your dreams - you are a brave man - her face scares the nightmare out of me...... :mrgreen: :mrgreen:
 
Top