Help with This equation. Logs

rawr

New member
Joined
Jun 12, 2010
Messages
1
I'm working with logs, and index's etc.
I have been given the question
solve for x:
5^(5-3x)=2^(x+2)

help, asap is appreciated.
thankyou.
 
I think we can solve this algebraically.

553x=2x+2\displaystyle 5^{5-3x}=2^{x+2}

(53x)ln(5)=(x+2)ln(2)\displaystyle (5-3x)ln(5)=(x+2)ln(2)

53xx+2=ln(2)ln(5)\displaystyle \frac{5-3x}{x+2}=\frac{ln(2)}{ln(5)}

11x+23=ln(2)ln(5)\displaystyle \frac{11}{x+2}-3=\frac{ln(2)}{ln(5)}

Add 3, then reciprocal of each side:

x+211=ln(5)ln(250)\displaystyle \frac{x+2}{11}=\frac{ln(5)}{ln(250)}

Now, finish up?.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Another way:

5553x=222x\displaystyle \frac{5^{5}}{5^{3x}}=2^{2}\cdot 2^{x}

312553x=42x\displaystyle \frac{3125}{5^{3x}}=4\cdot 2^{x}

31254=(532)x\displaystyle \frac{3125}{4}=(5^{3}\cdot 2)^{x}

Now, finish?.
 
Nice "catch" Galactus. I musta been dreaming of Lady Gaga :?
 
Hello, rawr!

Another approach . . .


Solve for x:    553x=2x+2\displaystyle \text{Solve for }x: \;\;5^{5-3x}\:=\:2^{x+2}


Take logs:   ln(553x)=ln(2x+2)\displaystyle \text{Take logs: }\;\ln\left(5^{5-3x}\right) \:=\:\ln\left(2^{x+2}\right)

. . . . . . .\(\displaystyle (5-3x)\!\cdot\!\ln5 \:=\:(x+2)\!\cdot\!\ln2\)

. . . . .5 ⁣ ⁣ln53x ⁣ ⁣ln5=x ⁣ ⁣ln2+2 ⁣ ⁣ln2\displaystyle 5\!\cdot\!\ln5 - 3x\!\cdot\!\ln5 \:=\:x\!\cdot\!\ln2 + 2\!\cdot\!\ln2

. . . . .x ⁣ ⁣ln2+3x ⁣ ⁣ln5=5 ⁣ ⁣ln52 ⁣ ⁣ln2\displaystyle x\!\cdot\!\ln2 + 3x\!\cdot\!\ln5 \:=\:5\!\cdot\!\ln5 - 2\!\cdot\!\ln2

. . . . .x ⁣ ⁣(ln2+3ln5)=5 ⁣ ⁣ln52 ⁣ ⁣ln2\displaystyle x\!\cdot\!(\ln 2 + 3\ln 5) \:=\:5\!\cdot\!\ln5 - 2\!\cdot\!\ln 2

. . . . . . . . . . . . . .x=5 ⁣ ⁣ln52 ⁣ ⁣ln2ln2+3 ⁣ ⁣ln5\displaystyle x \:=\:\frac{5\!\cdot\!\ln5 - 2\!\cdot\!\ln2}{\ln 2 + 3\!\cdot\!\ln5}


~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~


This can be simplified beyond all recognition . . .


. . x  =  ln(55)ln(22)ln(53)+ln2  =  ln3125ln4ln125+ln2\displaystyle x \;=\;\frac{\ln(5^5) - \ln(2^2)}{\ln(5^3) + \ln2} \;=\; \frac{\ln3125 - \ln4}{\ln125 + \ln 2}

. . . . =  ln(31254)ln(1252)  =  ln781.25ln250\displaystyle = \;\frac{\ln\left(\frac{3125}{4}\right)}{\ln(125\cdot2)} \;=\;\frac{\ln781.25}{\ln250}

. . . . \(\displaystyle = \;1.206364638\hdots\)

 
Well, to make up for my faux pas (and before Subhotosh has me stand in the corner!) :

m^(ax + u) = n^(bx + v)

x = (u - kv) / (kb - a) where k = log(n) / log(m)

From the given problem: m=5, n=2, a=-3, b=1, u = 5, v = 2, x=?
 
Denis said:
Nice "catch" Galactus. I musta been dreaming of Lady Gaga :?

Lady Gaga in your dreams - you are a brave man - her face scares the nightmare out of me...... :mrgreen: :mrgreen:
 
Top