Help with solving a sinh x equation please

nil101

New member
Joined
Oct 16, 2005
Messages
37
Please can you help me to solve \(\displaystyle \L
1.5 - 2e^x = 3\sinh x{\rm for real values of x}\)

This is what I've got so far.

\(\displaystyle \L
3\left( {\frac{{e^x + e^{ - x} }}{2}} \right) + 2e^x - 1.5 = 0\)

\(\displaystyle \L
3\left( {e^x + e^{ - x} } \right) + 4e^x - 3 = 0\)

\(\displaystyle \L
3e^x + 3e^{ - x} + 4e^x - 3 = 0\)

\(\displaystyle \L
7e^x + 3e^{ - x} - 3 = 0\)

I dont have confidence that I'm right up to this point because I think there should be a quadratic equation to solve to give the'real values of x'.

Would someone be able to put me straight?

Thanks
 
You used the wrong formula for \(\displaystyle sinh(x)\). You want \(\displaystyle (e^{x}-e^{-x})/2\).
 
Hello, nil101!

As royhaas pointed out, you used the wrong definition . . .
\(\displaystyle \;\;\)I'll correct it.

\(\displaystyle \text{Solve: } 1.5\,-\,2e^x\;=\;3\sinh x\,\)\(\displaystyle \text{ for real values of }x.\)
\(\displaystyle \L 3\left(\frac{e^x\,-\,e^{-x}}{2}\right)\;=\;1.5\,-\,2e^x\)

\(\displaystyle \L3e^x\,-\,3x^{-x}\;=\;3\,-\,4e^x\)

\(\displaystyle \L 7e^x\,-\,3\,-\,3e^{-x}\;=\;0\)

Multiply by \(\displaystyle e^x:\;\;\L7(e^x)^2 \,- \,3e^x\,-\,3\:=\:0\)


We have a quadratic . . . let \(\displaystyle u\,=\,e^x\)

\(\displaystyle \;\;\)Then we have: \(\displaystyle \L\,7u^2\,-\,3u\,-\,3\;=\;0\)

\(\displaystyle \text{Quadratic Formula: }\L\:u\;=\;\frac{-(-3)\,\pm\,\sqrt{(-3)^2\,-\,4(6)(-3)}}{2(7)} \;= \;\frac{3\,\pm\,\sqrt{93}}{14}\)


Back-substitute . . .

We have: \(\displaystyle \L\,e^x \:=\:\frac{3\,+\,\sqrt{93}}{14}\)\(\displaystyle \;\;\Rightarrow\;\;x\:=\:\ln(0.9033117911) \:=\:\)- 0.101902157

\(\displaystyle \;\;\)and: \(\displaystyle \L\,e^x\:=\:\frac{3\,-\,\sqrt{93}}{4}\)\(\displaystyle \;\;\Rightarrow\;\;x\:=\:\ln(-0.464546483)\) . . . not a real number!
 
Thank you very much for helping me out.
It's very much appreciated.
 
Top